Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd6 Structured version   Visualization version   GIF version

Theorem faclbnd6 13300
 Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
Assertion
Ref Expression
faclbnd6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))

Proof of Theorem faclbnd6
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6822 . . . . . 6 (𝑚 = 0 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑0))
21oveq2d 6830 . . . . 5 (𝑚 = 0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑0)))
3 oveq2 6822 . . . . . 6 (𝑚 = 0 → (𝑁 + 𝑚) = (𝑁 + 0))
43fveq2d 6357 . . . . 5 (𝑚 = 0 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 0)))
52, 4breq12d 4817 . . . 4 (𝑚 = 0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0))))
65imbi2d 329 . . 3 (𝑚 = 0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))))
7 oveq2 6822 . . . . . 6 (𝑚 = 𝑘 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑘))
87oveq2d 6830 . . . . 5 (𝑚 = 𝑘 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
9 oveq2 6822 . . . . . 6 (𝑚 = 𝑘 → (𝑁 + 𝑚) = (𝑁 + 𝑘))
109fveq2d 6357 . . . . 5 (𝑚 = 𝑘 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑘)))
118, 10breq12d 4817 . . . 4 (𝑚 = 𝑘 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))))
1211imbi2d 329 . . 3 (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))))
13 oveq2 6822 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑(𝑘 + 1)))
1413oveq2d 6830 . . . . 5 (𝑚 = (𝑘 + 1) → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))))
15 oveq2 6822 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑁 + 𝑚) = (𝑁 + (𝑘 + 1)))
1615fveq2d 6357 . . . . 5 (𝑚 = (𝑘 + 1) → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + (𝑘 + 1))))
1714, 16breq12d 4817 . . . 4 (𝑚 = (𝑘 + 1) → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
1817imbi2d 329 . . 3 (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
19 oveq2 6822 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑀))
2019oveq2d 6830 . . . . 5 (𝑚 = 𝑀 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑀)))
21 oveq2 6822 . . . . . 6 (𝑚 = 𝑀 → (𝑁 + 𝑚) = (𝑁 + 𝑀))
2221fveq2d 6357 . . . . 5 (𝑚 = 𝑀 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑀)))
2320, 22breq12d 4817 . . . 4 (𝑚 = 𝑀 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
2423imbi2d 329 . . 3 (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))))
25 faccl 13284 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 11247 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
2726leidd 10806 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (!‘𝑁))
28 nn0cn 11514 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29 peano2cn 10420 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3028, 29syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
3130exp0d 13216 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)↑0) = 1)
3231oveq2d 6830 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = ((!‘𝑁) · 1))
3325nncnd 11248 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
3433mulid1d 10269 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 1) = (!‘𝑁))
3532, 34eqtrd 2794 . . . 4 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = (!‘𝑁))
3628addid1d 10448 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 0) = 𝑁)
3736fveq2d 6357 . . . 4 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 0)) = (!‘𝑁))
3827, 35, 373brtr4d 4836 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))
3926adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
40 peano2nn0 11545 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4140nn0red 11564 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
42 reexpcl 13091 . . . . . . . . . . . . 13 (((𝑁 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4341, 42sylan 489 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4439, 43remulcld 10282 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ)
45 nnnn0 11511 . . . . . . . . . . . . . . 15 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℕ0)
4645nn0ge0d 11566 . . . . . . . . . . . . . 14 ((!‘𝑁) ∈ ℕ → 0 ≤ (!‘𝑁))
4725, 46syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
4847adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (!‘𝑁))
4941adantr 472 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
50 simpr 479 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5140nn0ge0d 11566 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
5251adantr 472 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (𝑁 + 1))
5349, 50, 52expge0d 13240 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((𝑁 + 1)↑𝑘))
5439, 43, 48, 53mulge0d 10816 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
5544, 54jca 555 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))))
56 nn0addcl 11540 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℕ0)
57 faccl 13284 . . . . . . . . . . . 12 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5856, 57syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5958nnred 11247 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℝ)
60 nn0re 11513 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
61 peano2nn0 11545 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
6261nn0red 11564 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
63 readdcl 10231 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6460, 62, 63syl2an 495 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6549, 52, 64jca31 558 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ))
6655, 59, 65jca31 558 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
6766adantr 472 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
68 simpr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))
6936adantr 472 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) = 𝑁)
70 nn0ge0 11530 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
7170adantl 473 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
72 nn0re 11513 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7372adantl 473 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
7460adantr 472 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
75 0re 10252 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
76 leadd2 10709 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7775, 76mp3an1 1560 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7873, 74, 77syl2anc 696 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7971, 78mpbid 222 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) ≤ (𝑁 + 𝑘))
8069, 79eqbrtrrd 4828 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑘))
8156nn0red 11564 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℝ)
82 1re 10251 . . . . . . . . . . . . . 14 1 ∈ ℝ
83 leadd1 10708 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8482, 83mp3an3 1562 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8574, 81, 84syl2anc 696 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8680, 85mpbid 222 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1))
87 nn0cn 11514 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
88 ax-1cn 10206 . . . . . . . . . . . . 13 1 ∈ ℂ
89 addass 10235 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9088, 89mp3an3 1562 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9128, 87, 90syl2an 495 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9286, 91breqtrd 4830 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9392adantr 472 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9468, 93jca 555 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))))
95 lemul12a 11093 . . . . . . . 8 ((((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)) → ((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1)))))
9667, 94, 95sylc 65 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
97 expp1 13081 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9830, 97sylan 489 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9998oveq2d 6830 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10033adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℂ)
101 expcl 13092 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10230, 101sylan 489 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10330adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
104100, 102, 103mulassd 10275 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10599, 104eqtr4d 2797 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
106105adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
107 facp1 13279 . . . . . . . . . 10 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10856, 107syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10991fveq2d 6357 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = (!‘(𝑁 + (𝑘 + 1))))
11091oveq2d 6830 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
111108, 109, 1103eqtr3d 2802 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
112111adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
11396, 106, 1123brtr4d 4836 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))
114113ex 449 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
115114expcom 450 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
116115a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
1176, 12, 18, 24, 38, 116nn0ind 11684 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
118117impcom 445 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   ≤ cle 10287  ℕcn 11232  ℕ0cn0 11504  ↑cexp 13074  !cfa 13274 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-seq 13016  df-exp 13075  df-fac 13275 This theorem is referenced by:  eftlub  15058
 Copyright terms: Public domain W3C validator