![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > faccl | Structured version Visualization version GIF version |
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
Ref | Expression |
---|---|
faccl | ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6352 | . . 3 ⊢ (𝑗 = 0 → (!‘𝑗) = (!‘0)) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ)) |
3 | fveq2 6352 | . . 3 ⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) | |
4 | 3 | eleq1d 2824 | . 2 ⊢ (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ)) |
5 | fveq2 6352 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1))) | |
6 | 5 | eleq1d 2824 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ)) |
7 | fveq2 6352 | . . 3 ⊢ (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁)) | |
8 | 7 | eleq1d 2824 | . 2 ⊢ (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ)) |
9 | fac0 13257 | . . 3 ⊢ (!‘0) = 1 | |
10 | 1nn 11223 | . . 3 ⊢ 1 ∈ ℕ | |
11 | 9, 10 | eqeltri 2835 | . 2 ⊢ (!‘0) ∈ ℕ |
12 | facp1 13259 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) | |
13 | 12 | adantl 473 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
14 | nn0p1nn 11524 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ) | |
15 | nnmulcl 11235 | . . . . 5 ⊢ (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) | |
16 | 14, 15 | sylan2 492 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) |
17 | 13, 16 | eqeltrd 2839 | . . 3 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ) |
18 | 17 | expcom 450 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ)) |
19 | 2, 4, 6, 8, 11, 18 | nn0ind 11664 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 ℕcn 11212 ℕ0cn0 11484 !cfa 13254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-seq 12996 df-fac 13255 |
This theorem is referenced by: faccld 13265 facmapnn 13266 facne0 13267 facdiv 13268 facndiv 13269 facwordi 13270 faclbnd 13271 faclbnd2 13272 faclbnd3 13273 faclbnd4lem1 13274 faclbnd5 13279 faclbnd6 13280 facubnd 13281 facavg 13282 bcrpcl 13289 bccmpl 13290 bcn0 13291 bcn1 13294 bcm1k 13296 bcval5 13299 permnn 13307 4bc2eq6 13310 hashf1 13433 hashfac 13434 bcfallfac 14974 fallfacfac 14975 eftcl 15003 reeftcl 15004 eftabs 15005 efcllem 15007 ef0lem 15008 ege2le3 15019 efcj 15021 efaddlem 15022 eftlub 15038 effsumlt 15040 eflegeo 15050 ef01bndlem 15113 eirrlem 15131 dvdsfac 15250 lcmflefac 15563 prmfac1 15633 pcfac 15805 pcbc 15806 infpnlem1 15816 infpnlem2 15817 prmunb 15820 prmgaplem1 15955 prmgaplem2 15956 gexcl3 18202 aaliou3lem1 24296 aaliou3lem2 24297 aaliou3lem3 24298 aaliou3lem8 24299 aaliou3lem5 24301 aaliou3lem6 24302 aaliou3lem7 24303 aaliou3lem9 24304 taylfvallem1 24310 taylply2 24321 taylply 24322 dvtaylp 24323 taylthlem2 24327 advlogexp 24600 birthdaylem2 24878 wilthlem3 24995 wilth 24996 chtublem 25135 logfacubnd 25145 logfaclbnd 25146 logfacbnd3 25147 logfacrlim 25148 logexprlim 25149 bcmono 25201 bposlem3 25210 vmadivsum 25370 subfacval2 31476 subfaclim 31477 subfacval3 31478 bcprod 31931 faclim2 31941 bcccl 39040 bcc0 39041 bccp1k 39042 binomcxplemwb 39049 dvnxpaek 40660 wallispi2lem2 40792 stirlinglem2 40795 stirlinglem3 40796 stirlinglem4 40797 stirlinglem13 40806 stirlinglem14 40807 stirlinglem15 40808 stirlingr 40810 pgrple2abl 42656 |
Copyright terms: Public domain | W3C validator |