MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexg Structured version   Visualization version   GIF version

Theorem fabexg 7279
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 7117 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
2 pwexg 4991 . 2 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
3 fabexg.1 . . . . 5 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 fssxp 6213 . . . . . . . 8 (𝑥:𝐴𝐵𝑥 ⊆ (𝐴 × 𝐵))
5 selpw 4301 . . . . . . . 8 (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵))
64, 5sylibr 224 . . . . . . 7 (𝑥:𝐴𝐵𝑥 ∈ 𝒫 (𝐴 × 𝐵))
76anim1i 593 . . . . . 6 ((𝑥:𝐴𝐵𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑))
87ss2abi 3807 . . . . 5 {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
93, 8eqsstri 3768 . . . 4 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
10 ssab2 3819 . . . 4 {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵)
119, 10sstri 3745 . . 3 𝐹 ⊆ 𝒫 (𝐴 × 𝐵)
12 ssexg 4948 . . 3 ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V)
1311, 12mpan 708 . 2 (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V)
141, 2, 133syl 18 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  {cab 2738  Vcvv 3332  wss 3707  𝒫 cpw 4294   × cxp 5256  wf 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-xp 5264  df-rel 5265  df-cnv 5266  df-dm 5268  df-rn 5269  df-fun 6043  df-fn 6044  df-f 6045
This theorem is referenced by:  fabex  7280  f1oabexg  7282  elghomlem1OLD  33989
  Copyright terms: Public domain W3C validator