![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fabex | Structured version Visualization version GIF version |
Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.) |
Ref | Expression |
---|---|
fabex.1 | ⊢ 𝐴 ∈ V |
fabex.2 | ⊢ 𝐵 ∈ V |
fabex.3 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
Ref | Expression |
---|---|
fabex | ⊢ 𝐹 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fabex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fabex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fabex.3 | . . 3 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
4 | 3 | fabexg 7273 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
5 | 1, 2, 4 | mp2an 672 | 1 ⊢ 𝐹 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1631 ∈ wcel 2145 {cab 2757 Vcvv 3351 ⟶wf 6026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-xp 5256 df-rel 5257 df-cnv 5258 df-dm 5260 df-rn 5261 df-fun 6032 df-fn 6033 df-f 6034 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |