![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f2ndf | Structured version Visualization version GIF version |
Description: The 2nd (second member of an ordered pair) function restricted to a function 𝐹 is a function of 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
Ref | Expression |
---|---|
f2ndf | ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f2ndres 7346 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | |
2 | fssxp 6209 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
3 | fssres 6219 | . . 3 ⊢ (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) | |
4 | 1, 2, 3 | sylancr 698 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) |
5 | 2 | resabs1d 5574 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd ↾ 𝐹)) |
6 | 5 | eqcomd 2754 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹)) |
7 | 6 | feq1d 6179 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ 𝐹):𝐹⟶𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵)) |
8 | 4, 7 | mpbird 247 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3703 × cxp 5252 ↾ cres 5256 ⟶wf 6033 2nd c2nd 7320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-fv 6045 df-2nd 7322 |
This theorem is referenced by: fo2ndf 7440 f1o2ndf1 7441 |
Copyright terms: Public domain | W3C validator |