![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1sng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
f1sng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osng 6318 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
2 | f1of1 6277 | . . 3 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → {〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵}) |
4 | snssi 4474 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ⊆ 𝑊) | |
5 | 4 | adantl 467 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐵} ⊆ 𝑊) |
6 | f1ss 6246 | . 2 ⊢ (({〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
7 | 3, 5, 6 | syl2anc 573 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ⊆ wss 3723 {csn 4316 〈cop 4322 –1-1→wf1 6028 –1-1-onto→wf1o 6030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 |
This theorem is referenced by: fsnd 6320 uspgr1e 26359 0wlkons1 27301 |
Copyright terms: Public domain | W3C validator |