![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1rhm0to0ALT | Structured version Visualization version GIF version |
Description: Alternate proof for f1rhm0to0 18950. Using ghmf1 17897 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
f1rhm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
f1rhm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
f1rhm0to0.n | ⊢ 𝑁 = (0g‘𝑆) |
f1rhm0to0.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
f1rhm0to0ALT | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 18935 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | 1 | adantr 466 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
3 | f1rhm0to0.a | . . . . . . . 8 ⊢ 𝐴 = (Base‘𝑅) | |
4 | f1rhm0to0.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑆) | |
5 | f1rhm0to0.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | f1rhm0to0.n | . . . . . . . 8 ⊢ 𝑁 = (0g‘𝑆) | |
7 | 3, 4, 5, 6 | ghmf1 17897 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ))) |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ))) |
9 | fveq2 6332 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
10 | 9 | eqeq1d 2773 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑁 ↔ (𝐹‘𝑋) = 𝑁)) |
11 | eqeq1 2775 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
12 | 10, 11 | imbi12d 333 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
13 | 12 | rspcv 3456 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
14 | 13 | adantl 467 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
15 | 8, 14 | sylbid 230 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴–1-1→𝐵 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
16 | 15 | ex 397 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑋 ∈ 𝐴 → (𝐹:𝐴–1-1→𝐵 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )))) |
17 | 16 | com23 86 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐴–1-1→𝐵 → (𝑋 ∈ 𝐴 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )))) |
18 | 17 | 3imp 1101 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )) |
19 | fveq2 6332 | . . . 4 ⊢ (𝑋 = 0 → (𝐹‘𝑋) = (𝐹‘ 0 )) | |
20 | 5, 6 | ghmid 17874 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
21 | 1, 20 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
22 | 21 | 3ad2ant1 1127 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘ 0 ) = 𝑁) |
23 | 19, 22 | sylan9eqr 2827 | . . 3 ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝐹‘𝑋) = 𝑁) |
24 | 23 | ex 397 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 0 → (𝐹‘𝑋) = 𝑁)) |
25 | 18, 24 | impbid 202 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 –1-1→wf1 6028 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 0gc0g 16308 GrpHom cghm 17865 RingHom crh 18922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-grp 17633 df-minusg 17634 df-sbg 17635 df-ghm 17866 df-mgp 18698 df-ur 18710 df-ring 18757 df-rnghom 18925 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |