![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1rhm0to0 | Structured version Visualization version GIF version |
Description: If a ring homomorphism 𝐹 is injective, it maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.) |
Ref | Expression |
---|---|
f1rhm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
f1rhm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
f1rhm0to0.n | ⊢ 𝑁 = (0g‘𝑆) |
f1rhm0to0.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
f1rhm0to0 | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 18947 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | f1rhm0to0.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
3 | f1rhm0to0.n | . . . . . . 7 ⊢ 𝑁 = (0g‘𝑆) | |
4 | 2, 3 | ghmid 17887 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
6 | 5 | 3ad2ant1 1128 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘ 0 ) = 𝑁) |
7 | 6 | eqeq2d 2770 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘ 0 ) ↔ (𝐹‘𝑋) = 𝑁)) |
8 | simp2 1132 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) | |
9 | simp3 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
10 | rhmrcl1 18941 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
11 | f1rhm0to0.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
12 | 11, 2 | ring0cl 18789 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐴) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 0 ∈ 𝐴) |
14 | 13 | 3ad2ant1 1128 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 0 ∈ 𝐴) |
15 | f1veqaeq 6678 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 0 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘ 0 ) → 𝑋 = 0 )) | |
16 | 8, 9, 14, 15 | syl12anc 1475 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘ 0 ) → 𝑋 = 0 )) |
17 | 7, 16 | sylbird 250 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )) |
18 | fveq2 6353 | . . . 4 ⊢ (𝑋 = 0 → (𝐹‘𝑋) = (𝐹‘ 0 )) | |
19 | 18, 6 | sylan9eqr 2816 | . . 3 ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝐹‘𝑋) = 𝑁) |
20 | 19 | ex 449 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 0 → (𝐹‘𝑋) = 𝑁)) |
21 | 17, 20 | impbid 202 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 –1-1→wf1 6046 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 0gc0g 16322 GrpHom cghm 17878 Ringcrg 18767 RingHom crh 18934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-grp 17646 df-ghm 17879 df-mgp 18710 df-ur 18722 df-ring 18769 df-rnghom 18937 |
This theorem is referenced by: rim0to0 18964 kerf1hrm 18965 |
Copyright terms: Public domain | W3C validator |