MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovv Structured version   Visualization version   GIF version

Theorem f1ovv 7290
Description: The range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
f1ovv (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))

Proof of Theorem f1ovv
StepHypRef Expression
1 f1ofo 6293 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 fornex 7288 . . 3 (𝐴 ∈ V → (𝐹:𝐴onto𝐵𝐵 ∈ V))
31, 2syl5com 31 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V → 𝐵 ∈ V))
4 f1of1 6285 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
5 f1dmex 7289 . . . 4 ((𝐹:𝐴1-1𝐵𝐵 ∈ V) → 𝐴 ∈ V)
65ex 449 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
74, 6syl 17 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
83, 7impbid 202 1 (𝐹:𝐴1-1-onto𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2127  Vcvv 3328  1-1wf1 6034  ontowfo 6035  1-1-ontowf1o 6036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045
This theorem is referenced by:  uspgrex  42237
  Copyright terms: Public domain W3C validator