![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ovi | Structured version Visualization version GIF version |
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
f1ovi | ⊢ I :V–1-1-onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6323 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
2 | reli 5393 | . . . 4 ⊢ Rel I | |
3 | dfrel3 5738 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
4 | 2, 3 | mpbi 220 | . . 3 ⊢ ( I ↾ V) = I |
5 | f1oeq1 6276 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
7 | 1, 6 | mpbi 220 | 1 ⊢ I :V–1-1-onto→V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1620 Vcvv 3328 I cid 5161 ↾ cres 5256 Rel wrel 5259 –1-1-onto→wf1o 6036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 |
This theorem is referenced by: ncanth 6760 |
Copyright terms: Public domain | W3C validator |