MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco3 Structured version   Visualization version   GIF version

Theorem f1omvdco3 18082
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))

Proof of Theorem f1omvdco3
StepHypRef Expression
1 notbi 308 . . . . 5 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )))
2 disjsn 4380 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐹 ∖ I ))
3 disj2 4165 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
42, 3bitr3i 266 . . . . . 6 𝑋 ∈ dom (𝐹 ∖ I ) ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
5 disjsn 4380 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I ))
6 disj2 4165 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
75, 6bitr3i 266 . . . . . 6 𝑋 ∈ dom (𝐺 ∖ I ) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
84, 7bibi12i 328 . . . . 5 ((¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
91, 8bitri 264 . . . 4 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
109notbii 309 . . 3 (¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
11 df-xor 1611 . . 3 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )))
12 df-xor 1611 . . 3 ((dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
1310, 11, 123bitr4i 292 . 2 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
14 f1omvdco2 18081 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
15 disj2 4165 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
16 disjsn 4380 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1715, 16bitr3i 266 . . . 4 (dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}) ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1817con2bii 346 . . 3 (𝑋 ∈ dom ((𝐹𝐺) ∖ I ) ↔ ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
1914, 18sylibr 224 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
2013, 19syl3an3b 1509 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1069  wxo 1610   = wceq 1629  wcel 2143  Vcvv 3348  cdif 3717  cin 3719  wss 3720  c0 4060  {csn 4313   I cid 5155  dom cdm 5248  ccom 5252  1-1-ontowf1o 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-xor 1611  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-ral 3064  df-rex 3065  df-rab 3068  df-v 3350  df-sbc 3585  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-br 4784  df-opab 4844  df-id 5156  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038
This theorem is referenced by:  psgnunilem5  18127
  Copyright terms: Public domain W3C validator