MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdcnv Structured version   Visualization version   GIF version

Theorem f1omvdcnv 18064
Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdcnv (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))

Proof of Theorem f1omvdcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 f1ocnvfvb 6698 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
213anidm23 1532 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
32bicomd 213 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
43necon3bid 2976 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) ≠ 𝑥))
54rabbidva 3328 . 2 (𝐹:𝐴1-1-onto𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
6 f1ocnv 6310 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
7 f1ofn 6299 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
8 fndifnfp 6606 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
96, 7, 83syl 18 . 2 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
10 f1ofn 6299 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
11 fndifnfp 6606 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
1210, 11syl 17 . 2 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
135, 9, 123eqtr4d 2804 1 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  {crab 3054  cdif 3712   I cid 5173  ccnv 5265  dom cdm 5266   Fn wfn 6044  1-1-ontowf1o 6048  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057
This theorem is referenced by:  f1omvdco2  18068  symgsssg  18087  symgfisg  18088
  Copyright terms: Public domain W3C validator