Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omptsnlem Structured version   Visualization version   GIF version

Theorem f1omptsnlem 33313
Description: This is the core of the proof of f1omptsn 33314, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 15-Jul-2020.)
Hypotheses
Ref Expression
f1omptsn.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
f1omptsn.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
f1omptsnlem 𝐹:𝐴1-1-onto𝑅
Distinct variable groups:   𝑥,𝐴,𝑢   𝑥,𝐹   𝑢,𝑅,𝑥
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem f1omptsnlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 f1omptsn.f . . . . 5 𝐹 = (𝑥𝐴 ↦ {𝑥})
2 eqid 2651 . . . . . . 7 {𝑥} = {𝑥}
3 snex 4938 . . . . . . . 8 {𝑥} ∈ V
4 eqsbc3 3508 . . . . . . . 8 ({𝑥} ∈ V → ([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥}))
53, 4ax-mp 5 . . . . . . 7 ([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥})
62, 5mpbir 221 . . . . . 6 [{𝑥} / 𝑢]𝑢 = {𝑥}
7 sbcel2 4022 . . . . . . . 8 ([{𝑥} / 𝑢]𝑥𝐴𝑥{𝑥} / 𝑢𝐴)
8 csbconstg 3579 . . . . . . . . . 10 ({𝑥} ∈ V → {𝑥} / 𝑢𝐴 = 𝐴)
93, 8ax-mp 5 . . . . . . . . 9 {𝑥} / 𝑢𝐴 = 𝐴
109eleq2i 2722 . . . . . . . 8 (𝑥{𝑥} / 𝑢𝐴𝑥𝐴)
117, 10bitri 264 . . . . . . 7 ([{𝑥} / 𝑢]𝑥𝐴𝑥𝐴)
12 f1omptsn.r . . . . . . . . . . . . . 14 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
1312abeq2i 2764 . . . . . . . . . . . . 13 (𝑢𝑅 ↔ ∃𝑥𝐴 𝑢 = {𝑥})
14 df-rex 2947 . . . . . . . . . . . . 13 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥𝐴𝑢 = {𝑥}))
1513, 14sylbbr 226 . . . . . . . . . . . 12 (∃𝑥(𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅)
161519.23bi 2099 . . . . . . . . . . 11 ((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅)
1716sbcth 3483 . . . . . . . . . 10 ({𝑥} ∈ V → [{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅))
183, 17ax-mp 5 . . . . . . . . 9 [{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅)
19 sbcimg 3510 . . . . . . . . . 10 ({𝑥} ∈ V → ([{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅) ↔ ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢𝑅)))
203, 19ax-mp 5 . . . . . . . . 9 ([{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅) ↔ ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢𝑅))
2118, 20mpbi 220 . . . . . . . 8 ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢𝑅)
22 sbcan 3511 . . . . . . . 8 ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) ↔ ([{𝑥} / 𝑢]𝑥𝐴[{𝑥} / 𝑢]𝑢 = {𝑥}))
23 sbcel1v 3528 . . . . . . . 8 ([{𝑥} / 𝑢]𝑢𝑅 ↔ {𝑥} ∈ 𝑅)
2421, 22, 233imtr3i 280 . . . . . . 7 (([{𝑥} / 𝑢]𝑥𝐴[{𝑥} / 𝑢]𝑢 = {𝑥}) → {𝑥} ∈ 𝑅)
2511, 24sylanbr 489 . . . . . 6 ((𝑥𝐴[{𝑥} / 𝑢]𝑢 = {𝑥}) → {𝑥} ∈ 𝑅)
266, 25mpan2 707 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝑅)
271, 26fmpti 6423 . . . 4 𝐹:𝐴𝑅
281fvmpt2 6330 . . . . . . . . 9 ((𝑥𝐴 ∧ {𝑥} ∈ 𝑅) → (𝐹𝑥) = {𝑥})
2926, 28mpdan 703 . . . . . . . 8 (𝑥𝐴 → (𝐹𝑥) = {𝑥})
30 sneq 4220 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130, 1, 3fvmpt3i 6326 . . . . . . . 8 (𝑦𝐴 → (𝐹𝑦) = {𝑦})
3229, 31eqeqan12d 2667 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ {𝑥} = {𝑦}))
33 vex 3234 . . . . . . . 8 𝑥 ∈ V
34 sneqbg 4406 . . . . . . . 8 (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
3533, 34ax-mp 5 . . . . . . 7 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
3632, 35syl6bb 276 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
3736biimpd 219 . . . . 5 ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3837rgen2a 3006 . . . 4 𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
39 dff13 6552 . . . 4 (𝐹:𝐴1-1𝑅 ↔ (𝐹:𝐴𝑅 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4027, 38, 39mpbir2an 975 . . 3 𝐹:𝐴1-1𝑅
41 f1f1orn 6186 . . 3 (𝐹:𝐴1-1𝑅𝐹:𝐴1-1-onto→ran 𝐹)
4240, 41ax-mp 5 . 2 𝐹:𝐴1-1-onto→ran 𝐹
43 rnmptsn 33312 . . . 4 ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
441rneqi 5384 . . . 4 ran 𝐹 = ran (𝑥𝐴 ↦ {𝑥})
4543, 44, 123eqtr4i 2683 . . 3 ran 𝐹 = 𝑅
46 f1oeq3 6167 . . 3 (ran 𝐹 = 𝑅 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:𝐴1-1-onto𝑅))
4745, 46ax-mp 5 . 2 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:𝐴1-1-onto𝑅)
4842, 47mpbi 220 1 𝐹:𝐴1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wral 2941  wrex 2942  Vcvv 3231  [wsbc 3468  csb 3566  {csn 4210  cmpt 4762  ran crn 5144  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934
This theorem is referenced by:  f1omptsn  33314
  Copyright terms: Public domain W3C validator