![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ofun | Structured version Visualization version GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6279 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6128 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6025 Fn wfn 6026 –1-1-onto→wf1o 6030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-fn 6034 df-f 6035 df-f1 6036 df-f1o 6038 |
This theorem is referenced by: f1orel 6281 f1oresrab 6537 fveqf1o 6700 isofrlem 6733 isofr 6735 isose 6736 f1opw 7036 xpcomco 8206 f1opwfi 8426 inlresf 8940 inrresf 8942 djuun 8952 isercolllem2 14604 isercoll 14606 unbenlem 15819 gsumpropd2lem 17481 symgfixf1 18064 tgqtop 21736 hmeontr 21793 reghmph 21817 nrmhmph 21818 tgpconncompeqg 22135 cnheiborlem 22973 dfrelog 24533 dvloglem 24615 logf1o2 24617 axcontlem9 26073 axcontlem10 26074 padct 29837 madjusmdetlem2 30234 tpr2rico 30298 ballotlemrv 30921 reprpmtf1o 31044 hgt750lemg 31072 subfacp1lem2a 31500 subfacp1lem2b 31501 subfacp1lem5 31504 ismtyres 33939 diaclN 36860 dia1elN 36864 diaintclN 36868 docaclN 36934 dibintclN 36977 sge0f1o 41116 f1oresf1o 41832 f1oresf1o2 41833 |
Copyright terms: Public domain | W3C validator |