MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq123d Structured version   Visualization version   GIF version

Theorem f1oeq123d 6246
Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
f1oeq123d (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))

Proof of Theorem f1oeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 f1oeq1 6240 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐴1-1-onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 f1oeq2 6241 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 f1oeq3 6242 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
103, 6, 93bitrd 294 1 (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1596  1-1-ontowf1o 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-rab 3023  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-br 4761  df-opab 4821  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008
This theorem is referenced by:  f1oprswap  6293  f1oprg  6294  cnfcom  8710  ackbij2lem2  9175  s2f1o  13782  s4f1o  13784  idffth  16715  ressffth  16720  symg1bas  17937  symg2bas  17939  symgfixels  17975  symgfixelsi  17976  rhmf1o  18855  mat1f1o  20407  isismt  25549  ushgredgedg  26241  ushgredgedgloop  26243  trlreslem  26727  wwlksnextbij  26941  clwlknf1oclwwlkn  27149  eupth0  27287  eupthp1  27289  clwwlknonclwlknonf1o  27443  dlwwlknondlwlknonf1o  27447  foresf1o  29571  f1ocnt  29789  indf1ofs  30318  eulerpartgbij  30664  eulerpartlemn  30673  reprpmtf1o  30934  poimirlem16  33657  poimirlem17  33658  poimirlem19  33660  poimirlem20  33661  poimirlem28  33669  wessf1ornlem  39787  disjf1o  39794  ssnnf1octb  39798  sge0fodjrnlem  41053  rnghmf1o  42330
  Copyright terms: Public domain W3C validator