MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen Structured version   Visualization version   GIF version

Theorem f1oen 8134
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Hypothesis
Ref Expression
f1oen.1 𝐴 ∈ V
Assertion
Ref Expression
f1oen (𝐹:𝐴1-1-onto𝐵𝐴𝐵)

Proof of Theorem f1oen
StepHypRef Expression
1 f1oen.1 . 2 𝐴 ∈ V
2 f1oeng 8132 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
31, 2mpan 708 1 (𝐹:𝐴1-1-onto𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2131  Vcvv 3332   class class class wbr 4796  1-1-ontowf1o 6040  cen 8110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-en 8114
This theorem is referenced by:  mapfien2  8471  infxpenlem  9018  dfac8alem  9034  dfac12lem2  9150  dfac12lem3  9151  r1om  9250  axcc2lem  9442  summolem3  14636  summolem2a  14637  summolem2  14638  zsum  14640  prodmolem3  14854  prodmolem2a  14855  prodmolem2  14856  zprod  14858  cpnnen  15149  eulerthlem2  15681  hashgcdeq  15688  4sqlem11  15853  gicen  17912  orbsta2  17939  odhash  18181  odhash2  18182  sylow1lem2  18206  sylow2blem1  18227  znhash  20101  basellem5  25002  eupthfi  27349  ballotlemfrc  30889  ballotlem8  30899  erdszelem10  31481  poimirlem4  33718  poimirlem26  33740  poimirlem27  33741  pwfi2en  38161  aacllem  43052
  Copyright terms: Public domain W3C validator