![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oen | Structured version Visualization version GIF version |
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
Ref | Expression |
---|---|
f1oen.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
f1oen | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | f1oeng 8132 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
3 | 1, 2 | mpan 708 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 Vcvv 3332 class class class wbr 4796 –1-1-onto→wf1o 6040 ≈ cen 8110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-en 8114 |
This theorem is referenced by: mapfien2 8471 infxpenlem 9018 dfac8alem 9034 dfac12lem2 9150 dfac12lem3 9151 r1om 9250 axcc2lem 9442 summolem3 14636 summolem2a 14637 summolem2 14638 zsum 14640 prodmolem3 14854 prodmolem2a 14855 prodmolem2 14856 zprod 14858 cpnnen 15149 eulerthlem2 15681 hashgcdeq 15688 4sqlem11 15853 gicen 17912 orbsta2 17939 odhash 18181 odhash2 18182 sylow1lem2 18206 sylow2blem1 18227 znhash 20101 basellem5 25002 eupthfi 27349 ballotlemfrc 30889 ballotlem8 30899 erdszelem10 31481 poimirlem4 33718 poimirlem26 33740 poimirlem27 33741 pwfi2en 38161 aacllem 43052 |
Copyright terms: Public domain | W3C validator |