![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1odm | Structured version Visualization version GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 6176 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 6028 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 dom cdm 5143 Fn wfn 5921 –1-1-onto→wf1o 5925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-fn 5929 df-f 5930 df-f1 5931 df-f1o 5933 |
This theorem is referenced by: f1imacnv 6191 f1opw2 6930 xpcomco 8091 domss2 8160 mapen 8165 ssenen 8175 phplem4 8183 php3 8187 f1opwfi 8311 unxpwdom2 8534 cnfcomlem 8634 ackbij2lem2 9100 ackbij2lem3 9101 fin4en1 9169 enfin2i 9181 hashfacen 13276 gsumpropd2lem 17320 symgbas 17846 symgfixf1 17903 f1omvdmvd 17909 f1omvdconj 17912 pmtrfb 17931 symggen 17936 symggen2 17937 psgnunilem1 17959 basqtop 21562 reghmph 21644 nrmhmph 21645 indishmph 21649 ordthmeolem 21652 ufldom 21813 tgpconncompeqg 21962 imasf1oxms 22341 icchmeo 22787 dvcvx 23828 dvloglem 24439 f1ocnt 29687 madjusmdetlem2 30022 madjusmdetlem4 30024 tpr2rico 30086 ballotlemrv 30709 reprpmtf1o 30832 hgt750lemg 30860 subfacp1lem2b 31289 subfacp1lem5 31292 poimirlem3 33542 ismtyres 33737 eldioph2lem1 37640 lnmlmic 37975 ntrclsiex 38668 ntrneiiex 38691 ssnnf1octb 39696 |
Copyright terms: Public domain | W3C validator |