![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv2 | Structured version Visualization version GIF version |
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv2 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv2 6201 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
2 | 1 | fveq1d 6231 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
4 | f1ocnv 6187 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
5 | f1of 6175 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
7 | fvco3 6314 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) | |
8 | 6, 7 | sylan 487 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) |
9 | fvresi 6480 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
11 | 3, 8, 10 | 3eqtr3d 2693 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 I cid 5052 ◡ccnv 5142 ↾ cres 5145 ∘ ccom 5147 ⟶wf 5922 –1-1-onto→wf1o 5925 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 |
This theorem is referenced by: f1ocnvfvb 6575 fveqf1o 6597 isocnv 6620 f1oiso2 6642 weniso 6644 ordiso2 8461 cantnfle 8606 cantnfp1lem3 8615 cantnflem1b 8621 cantnflem1d 8623 cantnflem1 8624 cnfcom2lem 8636 cnfcom2 8637 cnfcom3lem 8638 acndom2 8915 iunfictbso 8975 ttukeylem7 9375 fpwwe2lem6 9495 fpwwe2lem7 9496 uzrdglem 12796 uzrdgsuci 12799 fzennn 12807 axdc4uzlem 12822 seqf1olem1 12880 seqf1olem2 12881 hashfz1 13174 seqcoll 13286 seqcoll2 13287 summolem3 14489 summolem2a 14490 ackbijnn 14604 prodmolem3 14707 prodmolem2a 14708 sadcaddlem 15226 sadaddlem 15235 sadasslem 15239 sadeq 15241 phimullem 15531 eulerthlem2 15534 catcisolem 16803 mhmf1o 17392 ghmf1o 17737 f1omvdconj 17912 gsumval3eu 18351 gsumval3 18354 lmhmf1o 19094 fidomndrnglem 19354 basqtop 21562 tgqtop 21563 ordthmeolem 21652 symgtgp 21952 imasf1obl 22340 xrhmeo 22792 ovoliunlem2 23317 vitalilem2 23423 dvcnvlem 23784 dvcnv 23785 dvcnvre 23827 efif1olem4 24336 eff1olem 24339 eflog 24368 dvrelog 24428 dvlog 24442 asinrebnd 24673 sqff1o 24953 lgsqrlem4 25119 cnvmot 25481 f1otrg 25796 f1otrge 25797 axcontlem10 25898 usgrnbcnvfv 26311 wlkiswwlks2lem4 26826 clwlkclwwlklem2a4 26963 cnvunop 28905 unopadj 28906 bracnvbra 29100 abliso 29824 mndpluscn 30100 cvmfolem 31387 cvmliftlem6 31398 f1ocan1fv 33651 ismtycnv 33731 ismtyima 33732 ismtybndlem 33735 rngoisocnv 33910 lautcnvle 35693 lautcvr 35696 lautj 35697 lautm 35698 ltrncnvatb 35742 ltrncnvel 35746 ltrncnv 35750 ltrneq2 35752 cdlemg17h 36273 diainN 36663 diasslssN 36665 doca3N 36733 dihcnvid2 36879 dochocss 36972 mapdcnvid2 37263 rmxyval 37797 mgmhmf1o 42112 |
Copyright terms: Public domain | W3C validator |