MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvb Structured version   Visualization version   GIF version

Theorem f1ocnvb 6309
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
f1ocnvb (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))

Proof of Theorem f1ocnvb
StepHypRef Expression
1 f1ocnv 6308 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ocnv 6308 . . 3 (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵)
3 dfrel2 5739 . . . 4 (Rel 𝐹𝐹 = 𝐹)
4 f1oeq1 6286 . . . 4 (𝐹 = 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
53, 4sylbi 207 . . 3 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
62, 5syl5ib 234 . 2 (Rel 𝐹 → (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵))
71, 6impbid2 216 1 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1630  ccnv 5263  Rel wrel 5269  1-1-ontowf1o 6046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pr 5053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-rab 3057  df-v 3340  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-br 4803  df-opab 4863  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054
This theorem is referenced by:  hasheqf1oi  13332
  Copyright terms: Public domain W3C validator