MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2d Structured version   Visualization version   GIF version

Theorem f1o2d 7052
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1o2d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o2d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o2d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1o2d (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1o2d
StepHypRef Expression
1 f1od.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1o2d.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 f1o2d.3 . . 3 ((𝜑𝑦𝐵) → 𝐷𝐴)
4 f1o2d.4 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
51, 2, 3, 4f1ocnv2d 7051 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
65simpld 477 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cmpt 4881  ccnv 5265  1-1-ontowf1o 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056
This theorem is referenced by:  f1opw2  7053  en3d  8158  f1opwfi  8435  mapfien  8478  djulf1o  8946  djurf1o  8947  fin23lem22  9341  incexclem  14767  dvdsflip  15241  hashgcdlem  15695  grplmulf1o  17690  conjghm  17892  gapm  17939  psrbagconf1o  19576  hmeoimaf1o  21775  itg1mulc  23670  resinf1o  24481  eff1olem  24493  sqff1o  25107  dvdsppwf1o  25111  dvdsflf1o  25112  fcobij  29809
  Copyright terms: Public domain W3C validator