MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imass Structured version   Visualization version   GIF version

Theorem f1imass 6561
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imass ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))

Proof of Theorem f1imass
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplrl 817 . . . . . . 7 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐴)
21sseld 3635 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐴))
3 simplr 807 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝐹𝐶) ⊆ (𝐹𝐷))
43sseld 3635 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) → (𝐹𝑎) ∈ (𝐹𝐷)))
5 simplll 813 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐹:𝐴1-1𝐵)
6 simpr 476 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝑎𝐴)
7 simp1rl 1146 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐶𝐴)
873expa 1284 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐶𝐴)
9 f1elima 6560 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐶𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
105, 6, 8, 9syl3anc 1366 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐶) ↔ 𝑎𝐶))
11 simp1rr 1147 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷) ∧ 𝑎𝐴) → 𝐷𝐴)
12113expa 1284 . . . . . . . . 9 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → 𝐷𝐴)
13 f1elima 6560 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝑎𝐴𝐷𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
145, 6, 12, 13syl3anc 1366 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ 𝑎𝐷))
154, 10, 143imtr3d 282 . . . . . . 7 ((((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) ∧ 𝑎𝐴) → (𝑎𝐶𝑎𝐷))
1615ex 449 . . . . . 6 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐴 → (𝑎𝐶𝑎𝐷)))
172, 16syld 47 . . . . 5 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶 → (𝑎𝐶𝑎𝐷)))
1817pm2.43d 53 . . . 4 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → (𝑎𝐶𝑎𝐷))
1918ssrdv 3642 . . 3 (((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) ∧ (𝐹𝐶) ⊆ (𝐹𝐷)) → 𝐶𝐷)
2019ex 449 . 2 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) → 𝐶𝐷))
21 imass2 5536 . 2 (𝐶𝐷 → (𝐹𝐶) ⊆ (𝐹𝐷))
2220, 21impbid1 215 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  wss 3607  cima 5146  1-1wf1 5923  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fv 5934
This theorem is referenced by:  f1imaeq  6562  f1imapss  6563  enfin2i  9181  tsmsf1o  21995
  Copyright terms: Public domain W3C validator