![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imaeng | Structured version Visualization version GIF version |
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
f1imaeng | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ores 6314 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
2 | f1oeng 8143 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
3 | 2 | ancoms 468 | . . 3 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ∧ 𝐶 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) |
4 | 1, 3 | stoic3 1850 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) |
5 | 4 | ensymd 8175 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 ∈ wcel 2140 ⊆ wss 3716 class class class wbr 4805 ↾ cres 5269 “ cima 5270 –1-1→wf1 6047 –1-1-onto→wf1o 6049 ≈ cen 8121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-er 7914 df-en 8125 |
This theorem is referenced by: f1imaen 8186 ackbij1b 9274 enfin1ai 9419 isercolllem2 14616 pmtrfconj 18107 ballotlemro 30915 |
Copyright terms: Public domain | W3C validator |