![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imaen | Structured version Visualization version GIF version |
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.) |
Ref | Expression |
---|---|
f1imaen.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
f1imaen | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1imaen.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | f1imaeng 8173 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ V) → (𝐹 “ 𝐶) ≈ 𝐶) | |
3 | 1, 2 | mp3an3 1561 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 Vcvv 3351 ⊆ wss 3723 class class class wbr 4787 “ cima 5253 –1-1→wf1 6027 ≈ cen 8110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-er 7900 df-en 8114 |
This theorem is referenced by: ssenen 8294 fin4en1 9337 tskinf 9797 tskuni 9811 isercoll 14606 phimullem 15691 odngen 18199 erdsze2lem2 31524 |
Copyright terms: Public domain | W3C validator |