![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version |
Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1veqaeq 6554 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
2 | fveq2 6229 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
3 | 1, 2 | impbid1 215 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 –1-1→wf1 5923 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fv 5934 |
This theorem is referenced by: f1elima 6560 f1dom3fv3dif 6565 cocan1 6586 isof1oidb 6614 isosolem 6637 f1oiso 6641 weniso 6644 f1oweALT 7194 2dom 8070 xpdom2 8096 wemapwe 8632 fseqenlem1 8885 dfac12lem2 9004 infpssrlem4 9166 fin23lem28 9200 isf32lem7 9219 iundom2g 9400 canthnumlem 9508 canthwelem 9510 canthp1lem2 9513 pwfseqlem4 9522 seqf1olem1 12880 bitsinv2 15212 bitsf1 15215 sadasslem 15239 sadeq 15241 bitsuz 15243 eulerthlem2 15534 f1ocpbllem 16231 f1ovscpbl 16233 fthi 16625 ghmf1 17736 f1omvdmvd 17909 odf1 18025 dprdf1o 18477 ply1scln0 19709 zntoslem 19953 iporthcom 20028 cnt0 21198 cnhaus 21206 imasdsf1olem 22225 imasf1oxmet 22227 dyadmbl 23414 vitalilem3 23424 dvcnvlem 23784 facth1 23969 usgredg2v 26164 erdszelem9 31307 cvmliftmolem1 31389 msubff1 31579 metf1o 33681 rngoisocnv 33910 laut11 35690 gicabl 37986 fourierdlem50 40691 |
Copyright terms: Public domain | W3C validator |