MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1elima Structured version   Visualization version   GIF version

Theorem f1elima 6560
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1elima ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))

Proof of Theorem f1elima
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 f1fn 6140 . . . 4 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fvelimab 6292 . . . 4 ((𝐹 Fn 𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
31, 2sylan 487 . . 3 ((𝐹:𝐴1-1𝐵𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
433adant2 1100 . 2 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
5 ssel 3630 . . . . . . . 8 (𝑌𝐴 → (𝑧𝑌𝑧𝐴))
65impac 650 . . . . . . 7 ((𝑌𝐴𝑧𝑌) → (𝑧𝐴𝑧𝑌))
7 f1fveq 6559 . . . . . . . . . . . 12 ((𝐹:𝐴1-1𝐵 ∧ (𝑧𝐴𝑋𝐴)) → ((𝐹𝑧) = (𝐹𝑋) ↔ 𝑧 = 𝑋))
87ancom2s 861 . . . . . . . . . . 11 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴𝑧𝐴)) → ((𝐹𝑧) = (𝐹𝑋) ↔ 𝑧 = 𝑋))
98biimpd 219 . . . . . . . . . 10 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴𝑧𝐴)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑧 = 𝑋))
109anassrs 681 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑧𝐴) → ((𝐹𝑧) = (𝐹𝑋) → 𝑧 = 𝑋))
11 eleq1 2718 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝑧𝑌𝑋𝑌))
1211biimpcd 239 . . . . . . . . 9 (𝑧𝑌 → (𝑧 = 𝑋𝑋𝑌))
1310, 12sylan9 690 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑧𝐴) ∧ 𝑧𝑌) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1413anasss 680 . . . . . . 7 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ (𝑧𝐴𝑧𝑌)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
156, 14sylan2 490 . . . . . 6 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ (𝑌𝐴𝑧𝑌)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1615anassrs 681 . . . . 5 ((((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑌𝐴) ∧ 𝑧𝑌) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1716rexlimdva 3060 . . . 4 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
18173impa 1278 . . 3 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
19 eqid 2651 . . . 4 (𝐹𝑋) = (𝐹𝑋)
20 fveq2 6229 . . . . . 6 (𝑧 = 𝑋 → (𝐹𝑧) = (𝐹𝑋))
2120eqeq1d 2653 . . . . 5 (𝑧 = 𝑋 → ((𝐹𝑧) = (𝐹𝑋) ↔ (𝐹𝑋) = (𝐹𝑋)))
2221rspcev 3340 . . . 4 ((𝑋𝑌 ∧ (𝐹𝑋) = (𝐹𝑋)) → ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋))
2319, 22mpan2 707 . . 3 (𝑋𝑌 → ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋))
2418, 23impbid1 215 . 2 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) ↔ 𝑋𝑌))
254, 24bitrd 268 1 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  wss 3607  cima 5146   Fn wfn 5921  1-1wf1 5923  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fv 5934
This theorem is referenced by:  f1imass  6561  domunfican  8274  acndom2  8915  hashf1lem1  13277  f1omvdconj  17912  gsumzaddlem  18367  lindfmm  20214  axcontlem10  25898  trlsegvdeg  27205  ismtyima  33732
  Copyright terms: Public domain W3C validator