![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cocnv2 | Structured version Visualization version GIF version |
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.) |
Ref | Expression |
---|---|
f1cocnv2 | ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fun 6243 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) | |
2 | funcocnv2 6302 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 I cid 5156 ◡ccnv 5248 ran crn 5250 ↾ cres 5251 ∘ ccom 5253 Fun wfun 6025 –1-1→wf1 6028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |