![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
Ref | Expression |
---|---|
f10 | ⊢ ∅:∅–1-1→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6248 | . 2 ⊢ ∅:∅⟶𝐴 | |
2 | fun0 6116 | . . 3 ⊢ Fun ∅ | |
3 | cnv0 5694 | . . . 4 ⊢ ◡∅ = ∅ | |
4 | 3 | funeqi 6071 | . . 3 ⊢ (Fun ◡∅ ↔ Fun ∅) |
5 | 2, 4 | mpbir 221 | . 2 ⊢ Fun ◡∅ |
6 | df-f1 6055 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
7 | 1, 5, 6 | mpbir2an 993 | 1 ⊢ ∅:∅–1-1→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4059 ◡ccnv 5266 Fun wfun 6044 ⟶wf 6046 –1-1→wf1 6047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 |
This theorem is referenced by: f10d 6333 fo00 6335 marypha1lem 8507 hashf1 13454 usgr0 26356 |
Copyright terms: Public domain | W3C validator |