MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0dom0 Structured version   Visualization version   GIF version

Theorem f0dom0 6250
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 6188 . . . 4 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹:∅⟶𝑌))
2 f0bi 6249 . . . . 5 (𝐹:∅⟶𝑌𝐹 = ∅)
32biimpi 206 . . . 4 (𝐹:∅⟶𝑌𝐹 = ∅)
41, 3syl6bi 243 . . 3 (𝑋 = ∅ → (𝐹:𝑋𝑌𝐹 = ∅))
54com12 32 . 2 (𝐹:𝑋𝑌 → (𝑋 = ∅ → 𝐹 = ∅))
6 feq1 6187 . . . 4 (𝐹 = ∅ → (𝐹:𝑋𝑌 ↔ ∅:𝑋𝑌))
7 dm0 5494 . . . . 5 dom ∅ = ∅
8 fdm 6212 . . . . 5 (∅:𝑋𝑌 → dom ∅ = 𝑋)
97, 8syl5reqr 2809 . . . 4 (∅:𝑋𝑌𝑋 = ∅)
106, 9syl6bi 243 . . 3 (𝐹 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
1110com12 32 . 2 (𝐹:𝑋𝑌 → (𝐹 = ∅ → 𝑋 = ∅))
125, 11impbid 202 1 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  c0 4058  dom cdm 5266  wf 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-fun 6051  df-fn 6052  df-f 6053
This theorem is referenced by:  swrdn0  13630  elfrlmbasn0  20308  mavmulsolcl  20559
  Copyright terms: Public domain W3C validator