Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0cli Structured version   Visualization version   GIF version

Theorem f0cli 6356
 Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
Hypotheses
Ref Expression
f0cl.1 𝐹:𝐴𝐵
f0cl.2 ∅ ∈ 𝐵
Assertion
Ref Expression
f0cli (𝐹𝐶) ∈ 𝐵

Proof of Theorem f0cli
StepHypRef Expression
1 f0cl.1 . . 3 𝐹:𝐴𝐵
21ffvelrni 6344 . 2 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
31fdmi 6039 . . . 4 dom 𝐹 = 𝐴
43eleq2i 2691 . . 3 (𝐶 ∈ dom 𝐹𝐶𝐴)
5 ndmfv 6205 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
6 f0cl.2 . . . 4 ∅ ∈ 𝐵
75, 6syl6eqel 2707 . . 3 𝐶 ∈ dom 𝐹 → (𝐹𝐶) ∈ 𝐵)
84, 7sylnbir 321 . 2 𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
92, 8pm2.61i 176 1 (𝐹𝐶) ∈ 𝐵
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∈ wcel 1988  ∅c0 3907  dom cdm 5104  ⟶wf 5872  ‘cfv 5876 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884 This theorem is referenced by:  harcl  8451  cantnfvalf  8547  rankon  8643  cardon  8755  alephon  8877  ackbij1lem13  9039  ackbij1b  9046  ixxssxr  12172  sadcf  15156  smupf  15181  iccordt  20999  nodense  31816  bdayelon  31866
 Copyright terms: Public domain W3C validator