MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0cli Structured version   Visualization version   GIF version

Theorem f0cli 6513
Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
Hypotheses
Ref Expression
f0cl.1 𝐹:𝐴𝐵
f0cl.2 ∅ ∈ 𝐵
Assertion
Ref Expression
f0cli (𝐹𝐶) ∈ 𝐵

Proof of Theorem f0cli
StepHypRef Expression
1 f0cl.1 . . 3 𝐹:𝐴𝐵
21ffvelrni 6501 . 2 (𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
31fdmi 6192 . . . 4 dom 𝐹 = 𝐴
43eleq2i 2842 . . 3 (𝐶 ∈ dom 𝐹𝐶𝐴)
5 ndmfv 6359 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
6 f0cl.2 . . . 4 ∅ ∈ 𝐵
75, 6syl6eqel 2858 . . 3 𝐶 ∈ dom 𝐹 → (𝐹𝐶) ∈ 𝐵)
84, 7sylnbir 320 . 2 𝐶𝐴 → (𝐹𝐶) ∈ 𝐵)
92, 8pm2.61i 176 1 (𝐹𝐶) ∈ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2145  c0 4063  dom cdm 5249  wf 6027  cfv 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039
This theorem is referenced by:  harcl  8622  cantnfvalf  8726  rankon  8822  cardon  8970  alephon  9092  ackbij1lem13  9256  ackbij1b  9263  ixxssxr  12392  sadcf  15383  smupf  15408  iccordt  21239  nodense  32179  bdayelon  32229
  Copyright terms: Public domain W3C validator