![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | eximi 1802 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 |
This theorem is referenced by: 19.40 1837 euexALT 2540 moexex 2570 elex 3243 sbc5 3493 r19.2zb 4094 dmcoss 5417 suppimacnvss 7350 unblem2 8254 kmlem8 9017 isssc 16527 bnj1143 30987 bnj1371 31223 bnj1374 31225 bj-elissetv 32986 atex 35010 rtrclex 38241 clcnvlem 38247 pm10.55 38885 |
Copyright terms: Public domain | W3C validator |