![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exse2 | Structured version Visualization version GIF version |
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse2 | ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2950 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} | |
2 | vex 3234 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | vex 3234 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | breldm 5361 | . . . . . . 7 ⊢ (𝑦𝑅𝑥 → 𝑦 ∈ dom 𝑅) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅) |
6 | 5 | abssi 3710 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)} ⊆ dom 𝑅 |
7 | 1, 6 | eqsstri 3668 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 |
8 | dmexg 7139 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
9 | ssexg 4837 | . . . 4 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | sylancr 696 | . . 3 ⊢ (𝑅 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
11 | 10 | ralrimivw 2996 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
12 | df-se 5103 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
13 | 11, 12 | sylibr 224 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 {cab 2637 ∀wral 2941 {crab 2945 Vcvv 3231 ⊆ wss 3607 class class class wbr 4685 Se wse 5100 dom cdm 5143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-se 5103 df-cnv 5151 df-dm 5153 df-rn 5154 |
This theorem is referenced by: dfac8clem 8893 |
Copyright terms: Public domain | W3C validator |