Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse Structured version   Visualization version   GIF version

Theorem exse 5107
 Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse (𝐴𝑉𝑅 Se 𝐴)

Proof of Theorem exse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4844 . . 3 (𝐴𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
21ralrimivw 2996 . 2 (𝐴𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
3 df-se 5103 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
42, 3sylibr 224 1 (𝐴𝑉𝑅 Se 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2030  ∀wral 2941  {crab 2945  Vcvv 3231   class class class wbr 4685   Se wse 5100 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rab 2950  df-v 3233  df-in 3614  df-ss 3621  df-se 5103 This theorem is referenced by:  wemoiso  7195  wemoiso2  7196  oiiso  8483  hartogslem1  8488  oemapwe  8629  cantnffval2  8630  om2uzoi  12794  uzsinds  12826  bpolylem  14823
 Copyright terms: Public domain W3C validator