Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsb Structured version   Visualization version   GIF version

Theorem exsb 2496
 Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exsb
StepHypRef Expression
1 nfv 1883 . 2 𝑦𝜑
2 nfa1 2068 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
3 ax12v 2088 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
4 sp 2091 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
54com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
63, 5impbid 202 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
71, 2, 6cbvex 2308 1 (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1521  ∃wex 1744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator