![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > expnegico01 | Structured version Visualization version GIF version |
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
expnegico01 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 11861 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 472 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ) |
3 | eluz2nn 11890 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
4 | 3 | nnne0d 11228 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ≠ 0) |
5 | 4 | adantr 472 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0) |
6 | simpr 479 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | 2, 5, 6 | 3jca 1403 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
8 | 7 | 3adant3 1124 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
9 | reexpclz 13045 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
11 | 0red 10204 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ) | |
12 | 1 | 3ad2ant1 1125 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ) |
13 | 4 | 3ad2ant1 1125 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0) |
14 | simp2 1129 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ) | |
15 | 12, 13, 14 | reexpclzd 13199 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
16 | 3 | nngt0d 11227 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 0 < 𝐵) |
17 | 16 | 3ad2ant1 1125 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵) |
18 | expgt0 13058 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑁)) | |
19 | 12, 14, 17, 18 | syl3anc 1463 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵↑𝑁)) |
20 | 11, 15, 19 | ltled 10348 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵↑𝑁)) |
21 | 0zd 11552 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ) | |
22 | eluz2gt1 11924 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
23 | 22 | 3ad2ant1 1125 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵) |
24 | simp3 1130 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0) | |
25 | ltexp2a 13077 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵 ∧ 𝑁 < 0)) → (𝐵↑𝑁) < (𝐵↑0)) | |
26 | 12, 14, 21, 23, 24, 25 | syl32anc 1471 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < (𝐵↑0)) |
27 | eluzelcn 11862 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
28 | 27 | exp0d 13167 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
29 | 28 | eqcomd 2754 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
30 | 29 | 3ad2ant1 1125 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0)) |
31 | 26, 30 | breqtrrd 4820 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < 1) |
32 | 0re 10203 | . . . 4 ⊢ 0 ∈ ℝ | |
33 | 1re 10202 | . . . . 5 ⊢ 1 ∈ ℝ | |
34 | 33 | rexri 10260 | . . . 4 ⊢ 1 ∈ ℝ* |
35 | 32, 34 | pm3.2i 470 | . . 3 ⊢ (0 ∈ ℝ ∧ 1 ∈ ℝ*) |
36 | elico2 12401 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) | |
37 | 35, 36 | mp1i 13 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) |
38 | 10, 20, 31, 37 | mpbir3and 1406 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 ℝcr 10098 0cc0 10099 1c1 10100 ℝ*cxr 10236 < clt 10237 ≤ cle 10238 2c2 11233 ℤcz 11540 ℤ≥cuz 11850 [,)cico 12341 ↑cexp 13025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-ico 12345 df-seq 12967 df-exp 13026 |
This theorem is referenced by: digexp 42880 |
Copyright terms: Public domain | W3C validator |