Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expnegico01 Structured version   Visualization version   GIF version

Theorem expnegico01 42787
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
expnegico01 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))

Proof of Theorem expnegico01
StepHypRef Expression
1 eluzelre 11861 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
21adantr 472 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ)
3 eluz2nn 11890 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
43nnne0d 11228 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
54adantr 472 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0)
6 simpr 479 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
72, 5, 63jca 1403 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
873adant3 1124 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
9 reexpclz 13045 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵𝑁) ∈ ℝ)
108, 9syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
11 0red 10204 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ)
1213ad2ant1 1125 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ)
1343ad2ant1 1125 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0)
14 simp2 1129 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
1512, 13, 14reexpclzd 13199 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
163nngt0d 11227 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
17163ad2ant1 1125 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵)
18 expgt0 13058 . . . 4 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑁))
1912, 14, 17, 18syl3anc 1463 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵𝑁))
2011, 15, 19ltled 10348 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵𝑁))
21 0zd 11552 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ)
22 eluz2gt1 11924 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
23223ad2ant1 1125 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵)
24 simp3 1130 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0)
25 ltexp2a 13077 . . . 4 (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵𝑁 < 0)) → (𝐵𝑁) < (𝐵↑0))
2612, 14, 21, 23, 24, 25syl32anc 1471 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < (𝐵↑0))
27 eluzelcn 11862 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2827exp0d 13167 . . . . 5 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
2928eqcomd 2754 . . . 4 (𝐵 ∈ (ℤ‘2) → 1 = (𝐵↑0))
30293ad2ant1 1125 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0))
3126, 30breqtrrd 4820 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < 1)
32 0re 10203 . . . 4 0 ∈ ℝ
33 1re 10202 . . . . 5 1 ∈ ℝ
3433rexri 10260 . . . 4 1 ∈ ℝ*
3532, 34pm3.2i 470 . . 3 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
36 elico2 12401 . . 3 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3735, 36mp1i 13 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3810, 20, 31, 37mpbir3and 1406 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920   class class class wbr 4792  cfv 6037  (class class class)co 6801  cr 10098  0cc0 10099  1c1 10100  *cxr 10236   < clt 10237  cle 10238  2c2 11233  cz 11540  cuz 11850  [,)cico 12341  cexp 13025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-ico 12345  df-seq 12967  df-exp 13026
This theorem is referenced by:  digexp  42880
  Copyright terms: Public domain W3C validator