Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expmordi Structured version   Visualization version   GIF version

Theorem expmordi 37931
Description: Mantissa ordering relationship for exponentiation. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
expmordi (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))

Proof of Theorem expmordi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6773 . . . . . 6 (𝑎 = 1 → (𝐴𝑎) = (𝐴↑1))
2 oveq2 6773 . . . . . 6 (𝑎 = 1 → (𝐵𝑎) = (𝐵↑1))
31, 2breq12d 4773 . . . . 5 (𝑎 = 1 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑1) < (𝐵↑1)))
43imbi2d 329 . . . 4 (𝑎 = 1 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))))
5 oveq2 6773 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
6 oveq2 6773 . . . . . 6 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
75, 6breq12d 4773 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑏) < (𝐵𝑏)))
87imbi2d 329 . . . 4 (𝑎 = 𝑏 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏))))
9 oveq2 6773 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
10 oveq2 6773 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐵𝑎) = (𝐵↑(𝑏 + 1)))
119, 10breq12d 4773 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1))))
1211imbi2d 329 . . . 4 (𝑎 = (𝑏 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
13 oveq2 6773 . . . . . 6 (𝑎 = 𝑁 → (𝐴𝑎) = (𝐴𝑁))
14 oveq2 6773 . . . . . 6 (𝑎 = 𝑁 → (𝐵𝑎) = (𝐵𝑁))
1513, 14breq12d 4773 . . . . 5 (𝑎 = 𝑁 → ((𝐴𝑎) < (𝐵𝑎) ↔ (𝐴𝑁) < (𝐵𝑁)))
1615imbi2d 329 . . . 4 (𝑎 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑎) < (𝐵𝑎)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁))))
17 recn 10139 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 10139 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp1 12981 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
20 exp1 12981 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2119, 20breqan12d 4776 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2217, 18, 21syl2an 495 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑1) < (𝐵↑1) ↔ 𝐴 < 𝐵))
2322biimpar 503 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴↑1) < (𝐵↑1))
2423adantrl 754 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑1) < (𝐵↑1))
25 simp2ll 1277 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℝ)
26 nnnn0 11412 . . . . . . . . . . 11 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
27263ad2ant1 1125 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝑏 ∈ ℕ0)
2825, 27reexpcld 13140 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) ∈ ℝ)
29 simp2lr 1278 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℝ)
3029, 27reexpcld 13140 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵𝑏) ∈ ℝ)
3128, 30jca 555 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ))
32 simp2rl 1279 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ 𝐴)
3325, 27, 32expge0d 13141 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 0 ≤ (𝐴𝑏))
34 simp3 1130 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴𝑏) < (𝐵𝑏))
3533, 34jca 555 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏)))
36 simp2l 1218 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
37 simp2r 1219 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (0 ≤ 𝐴𝐴 < 𝐵))
38 ltmul12a 10992 . . . . . . . 8 (((((𝐴𝑏) ∈ ℝ ∧ (𝐵𝑏) ∈ ℝ) ∧ (0 ≤ (𝐴𝑏) ∧ (𝐴𝑏) < (𝐵𝑏))) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵))) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
3931, 35, 36, 37, 38syl22anc 1440 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → ((𝐴𝑏) · 𝐴) < ((𝐵𝑏) · 𝐵))
4025recnd 10181 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐴 ∈ ℂ)
4140, 27expp1d 13124 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4229recnd 10181 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → 𝐵 ∈ ℂ)
4342, 27expp1d 13124 . . . . . . 7 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐵↑(𝑏 + 1)) = ((𝐵𝑏) · 𝐵))
4439, 41, 433brtr4d 4792 . . . . . 6 ((𝑏 ∈ ℕ ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ (𝐴𝑏) < (𝐵𝑏)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))
45443exp 1112 . . . . 5 (𝑏 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → ((𝐴𝑏) < (𝐵𝑏) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
4645a2d 29 . . . 4 (𝑏 ∈ ℕ → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑏) < (𝐵𝑏)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴↑(𝑏 + 1)) < (𝐵↑(𝑏 + 1)))))
474, 8, 12, 16, 24, 46nnind 11151 . . 3 (𝑁 ∈ ℕ → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴𝑁) < (𝐵𝑁)))
4847impcom 445 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
49483impa 1100 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103   class class class wbr 4760  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cn 11133  0cn0 11405  cexp 12975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-seq 12917  df-exp 12976
This theorem is referenced by:  rpexpmord  37932
  Copyright terms: Public domain W3C validator