Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exple2lt6 Structured version   Visualization version   GIF version

Theorem exple2lt6 42673
Description: A nonnegative integer to the power of itself is less than 6 if it is less than or equal to 2. (Contributed by AV, 16-Mar-2019.)
Assertion
Ref Expression
exple2lt6 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁𝑁) < 6)

Proof of Theorem exple2lt6
StepHypRef Expression
1 nn0le2is012 11653 . 2 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
2 id 22 . . . . 5 (𝑁 = 0 → 𝑁 = 0)
32, 2oveq12d 6832 . . . 4 (𝑁 = 0 → (𝑁𝑁) = (0↑0))
4 0exp0e1 13079 . . . . 5 (0↑0) = 1
5 1lt6 11420 . . . . 5 1 < 6
64, 5eqbrtri 4825 . . . 4 (0↑0) < 6
73, 6syl6eqbr 4843 . . 3 (𝑁 = 0 → (𝑁𝑁) < 6)
8 id 22 . . . . 5 (𝑁 = 1 → 𝑁 = 1)
98, 8oveq12d 6832 . . . 4 (𝑁 = 1 → (𝑁𝑁) = (1↑1))
10 ax-1cn 10206 . . . . . 6 1 ∈ ℂ
11 exp1 13080 . . . . . 6 (1 ∈ ℂ → (1↑1) = 1)
1210, 11ax-mp 5 . . . . 5 (1↑1) = 1
1312, 5eqbrtri 4825 . . . 4 (1↑1) < 6
149, 13syl6eqbr 4843 . . 3 (𝑁 = 1 → (𝑁𝑁) < 6)
15 id 22 . . . . 5 (𝑁 = 2 → 𝑁 = 2)
1615, 15oveq12d 6832 . . . 4 (𝑁 = 2 → (𝑁𝑁) = (2↑2))
17 sq2 13174 . . . . 5 (2↑2) = 4
18 4lt6 11417 . . . . 5 4 < 6
1917, 18eqbrtri 4825 . . . 4 (2↑2) < 6
2016, 19syl6eqbr 4843 . . 3 (𝑁 = 2 → (𝑁𝑁) < 6)
217, 14, 203jaoi 1540 . 2 ((𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2) → (𝑁𝑁) < 6)
221, 21syl 17 1 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁𝑁) < 6)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1071   = wceq 1632  wcel 2139   class class class wbr 4804  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   < clt 10286  cle 10287  2c2 11282  4c4 11284  6c6 11286  0cn0 11504  cexp 13074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-n0 11505  df-z 11590  df-uz 11900  df-seq 13016  df-exp 13075
This theorem is referenced by:  pgrple2abl  42674
  Copyright terms: Public domain W3C validator