![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 629 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 446 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: reximd2a 3042 tfindsg2 7103 tz7.49c 7586 ssenen 8175 pssnn 8219 unwdomg 8530 cff1 9118 cfsmolem 9130 cfpwsdom 9444 wunex2 9598 mulgt0sr 9964 uzwo 11789 shftfval 13854 fsum2dlem 14545 fprod2dlem 14754 prmpwdvds 15655 quscrng 19288 chfacfscmul0 20711 chfacfpmmul0 20715 tgtop 20825 neitr 21032 bwth 21261 tx1stc 21501 cnextcn 21918 logfac2 24987 axcontlem12 25900 spanuni 28531 pjnmopi 29135 superpos 29341 atcvat4i 29384 rabeqsnd 29468 fpwrelmap 29636 2sqmo 29777 locfinreflem 30035 cmpcref 30045 fneint 32468 neibastop3 32482 bj-ismooredr2 33190 isbasisrelowllem1 33333 isbasisrelowllem2 33334 relowlssretop 33341 finxpreclem6 33363 fin2so 33526 matunitlindflem2 33536 poimirlem26 33565 poimirlem27 33566 heicant 33574 ismblfin 33580 ovoliunnfl 33581 itg2gt0cn 33595 cvrat4 35047 pell14qrexpcl 37748 odz2prm2pw 41800 |
Copyright terms: Public domain | W3C validator |