Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Visualization version   GIF version

Theorem expgrowthi 39058
Description: Exponential growth and decay model. See expgrowth 39060 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowthi.k (𝜑𝐾 ∈ ℂ)
expgrowthi.y0 (𝜑𝐶 ∈ ℂ)
expgrowthi.yt 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
Assertion
Ref Expression
expgrowthi (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))
Distinct variable groups:   𝑡,𝐶   𝑡,𝐾   𝑡,𝑆
Allowed substitution hints:   𝜑(𝑡)   𝑌(𝑡)

Proof of Theorem expgrowthi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
2 oveq2 6801 . . . . . . . 8 (𝑡 = 𝑦 → (𝐾 · 𝑡) = (𝐾 · 𝑦))
32fveq2d 6336 . . . . . . 7 (𝑡 = 𝑦 → (exp‘(𝐾 · 𝑡)) = (exp‘(𝐾 · 𝑦)))
43oveq2d 6809 . . . . . 6 (𝑡 = 𝑦 → (𝐶 · (exp‘(𝐾 · 𝑡))) = (𝐶 · (exp‘(𝐾 · 𝑦))))
54cbvmptv 4884 . . . . 5 (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
61, 5eqtri 2793 . . . 4 𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
76oveq2i 6804 . . 3 (𝑆 D 𝑌) = (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
8 expgrowthi.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 4337 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
10 eleq2 2839 . . . . . . . . . 10 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℝ))
11 recn 10228 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1210, 11syl6bi 243 . . . . . . . . 9 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℂ))
13 eleq2 2839 . . . . . . . . . 10 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1413biimpd 219 . . . . . . . . 9 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1512, 14jaoi 844 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (𝑦𝑆𝑦 ∈ ℂ))
168, 9, 153syl 18 . . . . . . 7 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
1716imp 393 . . . . . 6 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
18 expgrowthi.k . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
19 mulcl 10222 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
2018, 19sylan 569 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
21 efcl 15019 . . . . . . 7 ((𝐾 · 𝑦) ∈ ℂ → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2220, 21syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2317, 22syldan 579 . . . . 5 ((𝜑𝑦𝑆) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
24 ovexd 6825 . . . . 5 ((𝜑𝑦𝑆) → (𝐾 · (exp‘(𝐾 · 𝑦))) ∈ V)
25 cnelprrecn 10231 . . . . . . . 8 ℂ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ {ℝ, ℂ})
2717, 20syldan 579 . . . . . . 7 ((𝜑𝑦𝑆) → (𝐾 · 𝑦) ∈ ℂ)
2818adantr 466 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐾 ∈ ℂ)
29 efcl 15019 . . . . . . . 8 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3029adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
31 1cnd 10258 . . . . . . . . 9 ((𝜑𝑦𝑆) → 1 ∈ ℂ)
328dvmptid 23940 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑦𝑆𝑦)) = (𝑦𝑆 ↦ 1))
338, 17, 31, 32, 18dvmptcmul 23947 . . . . . . . 8 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆 ↦ (𝐾 · 1)))
3418mulid1d 10259 . . . . . . . . 9 (𝜑 → (𝐾 · 1) = 𝐾)
3534mpteq2dv 4879 . . . . . . . 8 (𝜑 → (𝑦𝑆 ↦ (𝐾 · 1)) = (𝑦𝑆𝐾))
3633, 35eqtrd 2805 . . . . . . 7 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆𝐾))
37 dvef 23963 . . . . . . . . 9 (ℂ D exp) = exp
38 eff 15018 . . . . . . . . . . . 12 exp:ℂ⟶ℂ
39 ffn 6185 . . . . . . . . . . . 12 (exp:ℂ⟶ℂ → exp Fn ℂ)
4038, 39ax-mp 5 . . . . . . . . . . 11 exp Fn ℂ
41 dffn5 6383 . . . . . . . . . . 11 (exp Fn ℂ ↔ exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4240, 41mpbi 220 . . . . . . . . . 10 exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4342oveq2i 6804 . . . . . . . . 9 (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4437, 43, 423eqtr3i 2801 . . . . . . . 8 (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4544a1i 11 . . . . . . 7 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
46 fveq2 6332 . . . . . . 7 (𝑥 = (𝐾 · 𝑦) → (exp‘𝑥) = (exp‘(𝐾 · 𝑦)))
478, 26, 27, 28, 30, 30, 36, 45, 46, 46dvmptco 23955 . . . . . 6 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)))
48 mulcom 10224 . . . . . . . . 9 (((exp‘(𝐾 · 𝑦)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
4923, 18, 48syl2anr 584 . . . . . . . 8 ((𝜑 ∧ (𝜑𝑦𝑆)) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5049anabss5 647 . . . . . . 7 ((𝜑𝑦𝑆) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5150mpteq2dva 4878 . . . . . 6 (𝜑 → (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
5247, 51eqtrd 2805 . . . . 5 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
53 expgrowthi.y0 . . . . 5 (𝜑𝐶 ∈ ℂ)
548, 23, 24, 52, 53dvmptcmul 23947 . . . 4 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))))
5553, 18, 233anim123i 1154 . . . . . . . 8 ((𝜑𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
56553anidm12 1529 . . . . . . 7 ((𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
5756anabss5 647 . . . . . 6 ((𝜑𝑦𝑆) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
58 mul12 10404 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
5957, 58syl 17 . . . . 5 ((𝜑𝑦𝑆) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
6059mpteq2dva 4878 . . . 4 (𝜑 → (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6154, 60eqtrd 2805 . . 3 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
627, 61syl5eq 2817 . 2 (𝜑 → (𝑆 D 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
63 ovexd 6825 . . 3 ((𝜑𝑦𝑆) → (𝐶 · (exp‘(𝐾 · 𝑦))) ∈ V)
64 fconstmpt 5303 . . . 4 (𝑆 × {𝐾}) = (𝑦𝑆𝐾)
6564a1i 11 . . 3 (𝜑 → (𝑆 × {𝐾}) = (𝑦𝑆𝐾))
666a1i 11 . . 3 (𝜑𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
678, 28, 63, 65, 66offval2 7061 . 2 (𝜑 → ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6862, 67eqtr4d 2808 1 (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 834  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  {csn 4316  {cpr 4318  cmpt 4863   × cxp 5247   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  𝑓 cof 7042  cc 10136  cr 10137  1c1 10139   · cmul 10143  expce 14998   D cdv 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851
This theorem is referenced by:  expgrowth  39060
  Copyright terms: Public domain W3C validator