Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Structured version   Visualization version   GIF version

Theorem expgrowth 38851
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 38849 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘𝑓 · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and 𝑓 · is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case.

Statements for this and expgrowthi 38849 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowth.k (𝜑𝐾 ∈ ℂ)
expgrowth.y (𝜑𝑌:𝑆⟶ℂ)
expgrowth.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
expgrowth (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Distinct variable groups:   𝑡,𝑐,𝐾   𝑆,𝑐,𝑡   𝑌,𝑐
Allowed substitution hints:   𝜑(𝑡,𝑐)   𝑌(𝑡)

Proof of Theorem expgrowth
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 10067 . . . . . . . . . . . . . . . . . 18 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 expgrowth.k . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
5 recnprss 23713 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
61, 5syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ⊆ ℂ)
76sseld 3635 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢𝑆𝑢 ∈ ℂ))
8 mulcl 10058 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝐾 · 𝑢) ∈ ℂ)
94, 7, 8syl6an 567 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 → (𝐾 · 𝑢) ∈ ℂ))
109imp 444 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → (𝐾 · 𝑢) ∈ ℂ)
1110negcld 10417 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -(𝐾 · 𝑢) ∈ ℂ)
124negcld 10417 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐾 ∈ ℂ)
1312adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -𝐾 ∈ ℂ)
14 efcl 14857 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1514adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
164adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → 𝐾 ∈ ℂ)
177imp 444 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 𝑢 ∈ ℂ)
18 ax-1cn 10032 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 1 ∈ ℂ)
201dvmptid 23765 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 D (𝑢𝑆𝑢)) = (𝑢𝑆 ↦ 1))
211, 17, 19, 20, 4dvmptcmul 23772 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆 ↦ (𝐾 · 1)))
224mulid1d 10095 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · 1) = 𝐾)
2322mpteq2dv 4778 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 ↦ (𝐾 · 1)) = (𝑢𝑆𝐾))
2421, 23eqtrd 2685 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆𝐾))
251, 10, 16, 24dvmptneg 23774 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 D (𝑢𝑆 ↦ -(𝐾 · 𝑢))) = (𝑢𝑆 ↦ -𝐾))
26 dvef 23788 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = exp
27 eff 14856 . . . . . . . . . . . . . . . . . . . . . 22 exp:ℂ⟶ℂ
28 ffn 6083 . . . . . . . . . . . . . . . . . . . . . 22 (exp:ℂ⟶ℂ → exp Fn ℂ)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 exp Fn ℂ
30 dffn5 6280 . . . . . . . . . . . . . . . . . . . . 21 (exp Fn ℂ ↔ exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3129, 30mpbi 220 . . . . . . . . . . . . . . . . . . . 20 exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3231oveq2i 6701 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3326, 32, 313eqtr3i 2681 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
35 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑦 = -(𝐾 · 𝑢) → (exp‘𝑦) = (exp‘-(𝐾 · 𝑢)))
361, 3, 11, 13, 15, 15, 25, 34, 35, 35dvmptco 23780 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
3736oveq2d 6706 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌𝑓 · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
38 expgrowth.y . . . . . . . . . . . . . . . 16 (𝜑𝑌:𝑆⟶ℂ)
39 efcl 14857 . . . . . . . . . . . . . . . . . . . 20 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4011, 39syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4140, 13mulcld 10098 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → ((exp‘-(𝐾 · 𝑢)) · -𝐾) ∈ ℂ)
42 eqid 2651 . . . . . . . . . . . . . . . . . 18 (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))
4341, 42fmptd 6425 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ)
4436feq1d 6068 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ ↔ (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ))
4543, 44mpbird 247 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
46 mulcom 10060 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
4746adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
481, 38, 45, 47caofcom 6971 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌𝑓 · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌))
4937, 48eqtr3d 2687 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌))
5049oveq2d 6706 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌)))
51 fconst6g 6132 . . . . . . . . . . . . . . . . . 18 (-𝐾 ∈ ℂ → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5212, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}):𝑆⟶ℂ)
53 eqid 2651 . . . . . . . . . . . . . . . . . 18 (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))
5440, 53fmptd 6425 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)
551, 52, 54, 47caofcom 6971 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘𝑓 · (𝑆 × {-𝐾})))
56 eqidd 2652 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))
57 fconstmpt 5197 . . . . . . . . . . . . . . . . . 18 (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾)
5857a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾))
591, 40, 13, 56, 58offval2 6956 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘𝑓 · (𝑆 × {-𝐾})) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
6055, 59eqtrd 2685 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
6160oveq2d 6706 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
6261oveq2d 6706 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))))
63 expgrowth.dy . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
6436dmeqd 5358 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
6542, 41dmmptd 6062 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = 𝑆)
6664, 65eqtrd 2685 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑆)
671, 38, 54, 63, 66dvmulf 23751 . . . . . . . . . . . . 13 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌)))
6850, 62, 673eqtr4rd 2696 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
69 ofmul12 38841 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ) ∧ ((𝑆 × {-𝐾}):𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)) → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
701, 38, 52, 54, 69syl22anc 1367 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7170oveq2d 6706 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7268, 71eqtrd 2685 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
73 oveq1 6697 . . . . . . . . . . . 12 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → ((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
7473oveq1d 6705 . . . . . . . . . . 11 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7572, 74sylan9eq 2705 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
76 mulass 10062 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7776adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
781, 52, 38, 54, 77caofass 6973 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7978oveq2d 6706 . . . . . . . . . . . 12 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
8079eqeq2d 2661 . . . . . . . . . . 11 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8180adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8275, 81mpbird 247 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
83 mulcl 10058 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8483adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
85 fconst6g 6132 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → (𝑆 × {𝐾}):𝑆⟶ℂ)
864, 85syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑆 × {𝐾}):𝑆⟶ℂ)
87 inidm 3855 . . . . . . . . . . . . 13 (𝑆𝑆) = 𝑆
8884, 86, 38, 1, 1, 87off 6954 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ)
8984, 52, 38, 1, 1, 87off 6954 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ)
90 adddir 10069 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9190adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
921, 54, 88, 89, 91caofdir 6976 . . . . . . . . . . 11 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
9392eqeq2d 2661 . . . . . . . . . 10 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9493adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9582, 94mpbird 247 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
96 ofnegsub 11056 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
971, 88, 88, 96syl3anc 1366 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
98 neg1cn 11162 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
9998fconst6 6133 . . . . . . . . . . . . . . . 16 (𝑆 × {-1}):𝑆⟶ℂ
10099a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 × {-1}):𝑆⟶ℂ)
1011, 100, 86, 38, 77caofass 6973 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) ∘𝑓 · 𝑌) = ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
10298a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
1031, 102, 4ofc12 6964 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) = (𝑆 × {(-1 · 𝐾)}))
1044mulm1d 10520 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-1 · 𝐾) = -𝐾)
105104sneqd 4222 . . . . . . . . . . . . . . . . 17 (𝜑 → {(-1 · 𝐾)} = {-𝐾})
106105xpeq2d 5173 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 × {(-1 · 𝐾)}) = (𝑆 × {-𝐾}))
107103, 106eqtrd 2685 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) = (𝑆 × {-𝐾}))
108107oveq1d 6705 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) ∘𝑓 · 𝑌) = ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌))
109101, 108eqtr3d 2687 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌))
110109oveq2d 6706 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)))
111 ofsubid 38840 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
1121, 88, 111syl2anc 694 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
11397, 110, 1123eqtr3d 2693 . . . . . . . . . . 11 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
114113oveq1d 6705 . . . . . . . . . 10 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
115114eqeq2d 2661 . . . . . . . . 9 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
116115adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
11795, 116mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
118 0cnd 10071 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
119 mul02 10252 . . . . . . . . . 10 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
120119adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
1211, 54, 118, 118, 120caofid2 6970 . . . . . . . 8 (𝜑 → ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
122121adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
123117, 122eqtrd 2685 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}))
1241adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → 𝑆 ∈ {ℝ, ℂ})
12584, 38, 54, 1, 1, 87off 6954 . . . . . . . 8 (𝜑 → (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
126125adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
127123dmeqd 5358 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → dom (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = dom (𝑆 × {0}))
128 0cn 10070 . . . . . . . . . 10 0 ∈ ℂ
129128fconst6 6133 . . . . . . . . 9 (𝑆 × {0}):𝑆⟶ℂ
130129fdmi 6090 . . . . . . . 8 dom (𝑆 × {0}) = 𝑆
131127, 130syl6eq 2701 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → dom (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = 𝑆)
132124, 126, 131dvconstbi 38850 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥})))
133123, 132mpbid 222 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}))
134 oveq1 6697 . . . . . . . . . 10 ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
135 efne0 14871 . . . . . . . . . . . . . . 15 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ≠ 0)
136 eldifsn 4350 . . . . . . . . . . . . . . 15 ((exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}) ↔ ((exp‘-(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘-(𝐾 · 𝑢)) ≠ 0))
13739, 135, 136sylanbrc 699 . . . . . . . . . . . . . 14 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
13811, 137syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
139138, 53fmptd 6425 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0}))
140 ofdivcan4 38843 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0})) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
1411, 38, 139, 140syl3anc 1366 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
142141eqeq1d 2653 . . . . . . . . . 10 (𝜑 → (((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
143134, 142syl5ib 234 . . . . . . . . 9 (𝜑 → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
144143adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
145 vex 3234 . . . . . . . . . . . . 13 𝑥 ∈ V
146145a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → 𝑥 ∈ V)
147 ovexd 6720 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → (1 / (exp‘(𝐾 · 𝑢))) ∈ V)
148 fconstmpt 5197 . . . . . . . . . . . . 13 (𝑆 × {𝑥}) = (𝑢𝑆𝑥)
149148a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑆 × {𝑥}) = (𝑢𝑆𝑥))
150 efneg 14872 . . . . . . . . . . . . . 14 ((𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
15110, 150syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
152151mpteq2dva 4777 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (1 / (exp‘(𝐾 · 𝑢)))))
1531, 146, 147, 149, 152offval2 6956 . . . . . . . . . . 11 (𝜑 → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
154153adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
155 efcl 14857 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
156 efne0 14871 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ≠ 0)
157155, 156jca 553 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑢) ∈ ℂ → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
15810, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑆) → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
159 ax-1ne0 10043 . . . . . . . . . . . . . . . . 17 1 ≠ 0
16018, 159pm3.2i 470 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ ∧ 1 ≠ 0)
161 divdiv2 10775 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
162160, 161mp3an2 1452 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
163158, 162sylan2 490 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
16410, 155syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑆) → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
165 mulcl 10058 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ∈ ℂ) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
166164, 165sylan2 490 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
167166div1d 10831 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1) = (𝑥 · (exp‘(𝐾 · 𝑢))))
168163, 167eqtrd 2685 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
169168ancoms 468 . . . . . . . . . . . 12 (((𝜑𝑢𝑆) ∧ 𝑥 ∈ ℂ) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
170169an32s 863 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝑆) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
171170mpteq2dva 4777 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
172154, 171eqtrd 2685 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
173172eqeq2d 2661 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
174144, 173sylibd 229 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
175174reximdva 3046 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
176175adantr 480 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
177133, 176mpd 15 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
178177ex 449 . . 3 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1791adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑆 ∈ {ℝ, ℂ})
1804adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝐾 ∈ ℂ)
181 simprl 809 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑥 ∈ ℂ)
182 eqid 2651 . . . . . . 7 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))
183179, 180, 181, 182expgrowthi 38849 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1841833impb 1279 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
185 oveq2 6698 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
186 oveq2 6698 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
187185, 186eqeq12d 2666 . . . . . 6 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
1881873ad2ant3 1104 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
189184, 188mpbird 247 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))
190189rexlimdv3a 3062 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
191178, 190impbid 202 . 2 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
192 oveq2 6698 . . . . . . . 8 (𝑢 = 𝑡 → (𝐾 · 𝑢) = (𝐾 · 𝑡))
193192fveq2d 6233 . . . . . . 7 (𝑢 = 𝑡 → (exp‘(𝐾 · 𝑢)) = (exp‘(𝐾 · 𝑡)))
194193oveq2d 6706 . . . . . 6 (𝑢 = 𝑡 → (𝑥 · (exp‘(𝐾 · 𝑢))) = (𝑥 · (exp‘(𝐾 · 𝑡))))
195194cbvmptv 4783 . . . . 5 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡))))
196 oveq1 6697 . . . . . 6 (𝑥 = 𝑐 → (𝑥 · (exp‘(𝐾 · 𝑡))) = (𝑐 · (exp‘(𝐾 · 𝑡))))
197196mpteq2dv 4778 . . . . 5 (𝑥 = 𝑐 → (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
198195, 197syl5eq 2697 . . . 4 (𝑥 = 𝑐 → (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
199198eqeq2d 2661 . . 3 (𝑥 = 𝑐 → (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
200199cbvrexv 3202 . 2 (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
201191, 200syl6bb 276 1 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  Vcvv 3231  cdif 3604  wss 3607  {csn 4210  {cpr 4212  cmpt 4762   × cxp 5141  dom cdm 5143   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cmin 10304  -cneg 10305   / cdiv 10722  expce 14836   D cdv 23672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator