Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge1 Structured version   Visualization version   GIF version

Theorem expge1 12937
 Description: Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))

Proof of Theorem expge1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4689 . . . . . 6 (𝑧 = 𝐴 → (1 ≤ 𝑧 ↔ 1 ≤ 𝐴))
21elrab 3396 . . . . 5 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 1 ≤ 𝐴))
3 ssrab2 3720 . . . . . . 7 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 10031 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3645 . . . . . 6 {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℂ
6 breq2 4689 . . . . . . . 8 (𝑧 = 𝑥 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑥))
76elrab 3396 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8 breq2 4689 . . . . . . . 8 (𝑧 = 𝑦 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑦))
98elrab 3396 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
10 remulcl 10059 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1110ad2ant2r 798 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
12 1t1e1 11213 . . . . . . . . . 10 (1 · 1) = 1
13 1re 10077 . . . . . . . . . . . . . 14 1 ∈ ℝ
14 0le1 10589 . . . . . . . . . . . . . 14 0 ≤ 1
1513, 14pm3.2i 470 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ≤ 1)
1615jctl 563 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ))
1715jctl 563 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ))
18 lemul12a 10919 . . . . . . . . . . . 12 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
1916, 17, 18syl2an 493 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦)))
2019imp 444 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → (1 · 1) ≤ (𝑥 · 𝑦))
2112, 20syl5eqbrr 4721 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
2221an4s 886 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦))
23 breq2 4689 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (1 ≤ 𝑧 ↔ 1 ≤ (𝑥 · 𝑦)))
2423elrab 3396 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 1 ≤ (𝑥 · 𝑦)))
2511, 22, 24sylanbrc 699 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
267, 9, 25syl2anb 495 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
27 1le1 10693 . . . . . . 7 1 ≤ 1
28 breq2 4689 . . . . . . . 8 (𝑧 = 1 → (1 ≤ 𝑧 ↔ 1 ≤ 1))
2928elrab 3396 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 1 ≤ 1))
3013, 27, 29mpbir2an 975 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}
315, 26, 30expcllem 12911 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
322, 31sylanbr 489 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
33323impa 1278 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
34333com23 1291 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧})
35 breq2 4689 . . . 4 (𝑧 = (𝐴𝑁) → (1 ≤ 𝑧 ↔ 1 ≤ (𝐴𝑁)))
3635elrab 3396 . . 3 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 1 ≤ (𝐴𝑁)))
3736simprbi 479 . 2 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} → 1 ≤ (𝐴𝑁))
3834, 37syl 17 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030  {crab 2945   class class class wbr 4685  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   · cmul 9979   ≤ cle 10113  ℕ0cn0 11330  ↑cexp 12900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901 This theorem is referenced by:  expgt1  12938  leexp2a  12956  expge1d  13067  hgt750lem  30857  tgoldbachgnn  30865
 Copyright terms: Public domain W3C validator