![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version |
Description: Commuted form of expd 451. (Contributed by Alan Sare, 18-Mar-2012.) |
Ref | Expression |
---|---|
expdcom.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expdcom.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 451 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com3l 89 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: odi 7704 nndi 7748 nnmass 7749 ttukeylem5 9373 genpnmax 9867 mulexp 12939 expadd 12942 expmul 12945 prmgaplem6 15807 setsstruct 15945 usgredg2vlem2 26163 usgr2trlncl 26712 clwwlkel 27009 clwwlkf1 27012 wwlksext2clwwlk 27021 n4cyclfrgr 27271 5oalem6 28646 atom1d 29340 grpomndo 33804 pell14qrexpclnn0 37747 truniALT 39068 truniALTVD 39428 iccpartigtl 41684 sbgoldbm 41997 2zlidl 42259 rngccatidALTV 42314 ringccatidALTV 42377 nn0sumshdiglemA 42738 |
Copyright terms: Public domain | W3C validator |