![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version |
Description: Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
Ref | Expression |
---|---|
expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3757 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | mulcl 10204 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
3 | ax-1cn 10178 | . 2 ⊢ 1 ∈ ℂ | |
4 | 1, 2, 3 | expcllem 13057 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 (class class class)co 6805 ℂcc 10118 ℕ0cn0 11476 ↑cexp 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-seq 12988 df-exp 13047 |
This theorem is referenced by: expeq0 13076 expnegz 13080 mulexp 13085 mulexpz 13086 expadd 13088 expaddzlem 13089 expaddz 13090 expmul 13091 expmulz 13092 expdiv 13097 binom3 13171 digit2 13183 digit1 13184 expcld 13194 faclbnd2 13264 faclbnd4lem4 13269 faclbnd6 13272 cjexp 14081 absexp 14235 ackbijnn 14751 binomlem 14752 binom1p 14754 binom1dif 14756 expcnv 14787 geolim 14792 geolim2 14793 geo2sum 14795 geomulcvg 14798 geoisum 14799 geoisumr 14800 geoisum1 14801 geoisum1c 14802 0.999... 14803 0.999...OLD 14804 fallrisefac 14947 0risefac 14960 binomrisefac 14964 bpolysum 14975 bpolydiflem 14976 fsumkthpow 14978 bpoly3 14980 bpoly4 14981 fsumcube 14982 eftcl 14995 eftabs 14997 efcllem 14999 efcj 15013 efaddlem 15014 eflegeo 15042 efi4p 15058 prmreclem6 15819 decsplitOLD 15985 karatsuba 15986 karatsubaOLD 15987 expmhm 20009 mbfi1fseqlem6 23678 itg0 23737 itgz 23738 itgcl 23741 itgcnlem 23747 itgsplit 23793 dvexp 23907 dvexp3 23932 plyf 24145 ply1termlem 24150 plypow 24152 plyeq0lem 24157 plypf1 24159 plyaddlem1 24160 plymullem1 24161 coeeulem 24171 coeidlem 24184 coeid3 24187 plyco 24188 dgrcolem2 24221 plycjlem 24223 plyrecj 24226 vieta1 24258 elqaalem3 24267 aareccl 24272 aalioulem1 24278 geolim3 24285 psergf 24357 dvradcnv 24366 psercn2 24368 pserdvlem2 24373 pserdv2 24375 abelthlem4 24379 abelthlem5 24380 abelthlem6 24381 abelthlem7 24383 abelthlem9 24385 advlogexp 24592 logtayllem 24596 logtayl 24597 logtaylsum 24598 logtayl2 24599 cxpeq 24689 dcubic1lem 24761 dcubic2 24762 dcubic1 24763 dcubic 24764 mcubic 24765 cubic2 24766 cubic 24767 binom4 24768 dquartlem2 24770 dquart 24771 quart1cl 24772 quart1lem 24773 quart1 24774 quartlem1 24775 quartlem2 24776 quart 24779 atantayl 24855 atantayl2 24856 atantayl3 24857 leibpi 24860 log2cnv 24862 log2tlbnd 24863 log2ublem3 24866 ftalem1 24990 ftalem4 24993 ftalem5 24994 basellem3 25000 musum 25108 1sgmprm 25115 perfect 25147 lgsquadlem1 25296 rplogsumlem2 25365 ostth2lem2 25514 numclwlk3lem3 27488 ipval2 27863 dipcl 27868 dipcn 27876 subfacval2 31468 jm2.23 38057 lhe4.4ex1a 39022 perfectALTV 42134 altgsumbc 42632 altgsumbcALT 42633 nn0digval 42896 |
Copyright terms: Public domain | W3C validator |