![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4c | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp4c.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4c.1 | . . 3 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 451 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
3 | 2 | expd 451 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: exp5j 644 oawordri 7675 oaordex 7683 odi 7704 pssnn 8219 alephval3 8971 dfac2 8991 axdc4lem 9315 leexp1a 12959 wrdsymb0 13371 swrdnd2 13479 coprmproddvds 15424 lmodvsmmulgdi 18946 assamulgscm 19398 2ndcctbss 21306 2pthnloop 26683 wwlksnext 26856 frgrregord013 27382 atcvatlem 29372 exp5g 32422 cdleme48gfv1 36141 cdlemg6e 36227 dihord5apre 36868 dihglblem5apreN 36897 iccpartgt 41688 lmodvsmdi 42488 lindslinindsimp1 42571 nn0sumshdiglemB 42739 |
Copyright terms: Public domain | W3C validator |