![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp41 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp41.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp41 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp41.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 449 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | exp31 631 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: ad5ant2345 1436 tz7.49 7660 supxrun 12260 injresinj 12704 fi1uzind 13392 brfi1indALT 13395 swrdswrdlem 13580 swrdswrd 13581 2cshwcshw 13692 cshwcsh2id 13695 prmgaplem6 15883 cusgrsize2inds 26480 usgr2pthlem 26790 usgr2pth 26791 wwlksnext 26932 elwwlks2 27009 rusgrnumwwlks 27017 clwlkclwwlklem2a4 27041 clwlkclwwlklem2 27044 umgrhashecclwwlk 27130 clwlksfclwwlkOLD 27137 1to3vfriswmgr 27355 frgrnbnb 27368 branmfn 29194 relowlpssretop 33444 broucube 33675 eel0001 39364 eel0000 39365 eel1111 39366 eel00001 39367 eel00000 39368 eel11111 39369 climrec 40255 bgoldbtbndlem4 42123 bgoldbtbnd 42124 tgoldbach 42132 tgoldbachOLD 42139 2zlidl 42361 2zrngmmgm 42373 lincsumcl 42647 |
Copyright terms: Public domain | W3C validator |