![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp0 | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1, following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11580 | . . 3 ⊢ 0 ∈ ℤ | |
2 | expval 13056 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
3 | 1, 2 | mpan2 709 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
4 | eqid 2760 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4237 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
6 | 3, 5 | syl6eq 2810 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ifcif 4230 {csn 4321 class class class wbr 4804 × cxp 5264 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 0cc0 10128 1c1 10129 · cmul 10133 < clt 10266 -cneg 10459 / cdiv 10876 ℕcn 11212 ℤcz 11569 seqcseq 12995 ↑cexp 13054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-neg 10461 df-z 11570 df-seq 12996 df-exp 13055 |
This theorem is referenced by: 0exp0e1 13059 expp1 13061 expneg 13062 expcllem 13065 mulexp 13093 expadd 13096 expmul 13099 leexp1a 13113 exple1 13114 bernneq 13184 modexp 13193 exp0d 13196 faclbnd4lem1 13274 faclbnd4lem3 13276 faclbnd4lem4 13277 cjexp 14089 absexp 14243 binom 14761 incexclem 14767 incexc 14768 climcndslem1 14780 fprodconst 14907 fallfac0 14958 bpoly0 14980 ege2le3 15019 eft0val 15041 demoivreALT 15130 pwp1fsum 15316 bits0 15352 0bits 15363 bitsinv1 15366 sadcadd 15382 smumullem 15416 numexp0 15982 psgnunilem4 18117 psgn0fv0 18131 psgnsn 18140 psgnprfval1 18142 cnfldexp 19981 expmhm 20017 expcn 22876 iblcnlem1 23753 itgcnlem 23755 dvexp 23915 dvexp2 23916 plyconst 24161 0dgr 24200 0dgrb 24201 aaliou3lem2 24297 cxp0 24615 1cubr 24768 log2ublem3 24874 basellem2 25007 basellem5 25010 lgsquad2lem2 25309 0dp2dp 29926 oddpwdc 30725 breprexp 31020 subfacval2 31476 fwddifn0 32577 stoweidlem19 40739 fmtno0 41962 pwdif 42011 bits0ALTV 42100 0dig2nn0e 42916 0dig2nn0o 42917 nn0sumshdiglemA 42923 nn0sumshdiglemB 42924 nn0sumshdiglem1 42925 nn0sumshdiglem2 42926 |
Copyright terms: Public domain | W3C validator |