![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimdvv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2227. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 2010 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 2010 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 |
This theorem depends on definitions: df-bi 197 df-ex 1854 |
This theorem is referenced by: euotd 5123 opabssxpd 5493 funopg 6083 fmptsnd 6600 tpres 6631 fundmen 8197 undom 8215 infxpenc2 9055 zorn2lem6 9535 fpwwe2lem12 9675 genpnnp 10039 addsrmo 10106 mulsrmo 10107 hashfun 13436 hash2exprb 13465 rtrclreclem3 14019 summo 14667 fsum2dlem 14720 ntrivcvgmul 14853 prodmo 14885 fprod2dlem 14929 iscatd2 16563 gsumval3eu 18525 gsum2d2 18593 ptbasin 21602 txcls 21629 txbasval 21631 reconn 22852 phtpcer 23015 pcohtpy 23040 mbfi1flimlem 23708 mbfmullem 23711 itg2add 23745 fsumvma 25158 umgr3v3e3cycl 27357 conngrv2edg 27368 pconnconn 31541 txsconn 31551 dfpo2 31973 neibastop1 32681 itg2addnc 33795 riscer 34118 dalem62 35541 pellexlem5 37917 pellex 37919 iunrelexpuztr 38531 fzisoeu 40031 stoweidlem53 40791 stoweidlem56 40794 |
Copyright terms: Public domain | W3C validator |