Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidreslem Structured version   Visualization version   GIF version

Theorem exidreslem 33806
Description: Lemma for exidres 33807 and exidresid 33808. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidreslem ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑌   𝑥,𝑋   𝑥,𝑈   𝑥,𝐻

Proof of Theorem exidreslem
StepHypRef Expression
1 exidres.3 . . . . . . . 8 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
21dmeqi 5357 . . . . . . 7 dom 𝐻 = dom (𝐺 ↾ (𝑌 × 𝑌))
3 xpss12 5158 . . . . . . . . . . 11 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
43anidms 678 . . . . . . . . . 10 (𝑌𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
5 exidres.1 . . . . . . . . . . . . 13 𝑋 = ran 𝐺
65opidon2OLD 33783 . . . . . . . . . . . 12 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
7 fof 6153 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
8 fdm 6089 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
96, 7, 83syl 18 . . . . . . . . . . 11 (𝐺 ∈ (Magma ∩ ExId ) → dom 𝐺 = (𝑋 × 𝑋))
109sseq2d 3666 . . . . . . . . . 10 (𝐺 ∈ (Magma ∩ ExId ) → ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)))
114, 10syl5ibr 236 . . . . . . . . 9 (𝐺 ∈ (Magma ∩ ExId ) → (𝑌𝑋 → (𝑌 × 𝑌) ⊆ dom 𝐺))
1211imp 444 . . . . . . . 8 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑌 × 𝑌) ⊆ dom 𝐺)
13 ssdmres 5455 . . . . . . . 8 ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
1412, 13sylib 208 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
152, 14syl5eq 2697 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom 𝐻 = (𝑌 × 𝑌))
1615dmeqd 5358 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = dom (𝑌 × 𝑌))
17 dmxpid 5377 . . . . 5 dom (𝑌 × 𝑌) = 𝑌
1816, 17syl6eq 2701 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = 𝑌)
1918eleq2d 2716 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑈 ∈ dom dom 𝐻𝑈𝑌))
2019biimp3ar 1473 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
21 ssel2 3631 . . . . . . . . . 10 ((𝑌𝑋𝑥𝑌) → 𝑥𝑋)
22 exidres.2 . . . . . . . . . . 11 𝑈 = (GId‘𝐺)
235, 22cmpidelt 33788 . . . . . . . . . 10 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑥𝑋) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2421, 23sylan2 490 . . . . . . . . 9 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝑌𝑋𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2524anassrs 681 . . . . . . . 8 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2625adantrl 752 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
271oveqi 6703 . . . . . . . . . . 11 (𝑈𝐻𝑥) = (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥)
28 ovres 6842 . . . . . . . . . . 11 ((𝑈𝑌𝑥𝑌) → (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥) = (𝑈𝐺𝑥))
2927, 28syl5eq 2697 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑈𝐻𝑥) = (𝑈𝐺𝑥))
3029eqeq1d 2653 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
311oveqi 6703 . . . . . . . . . . . 12 (𝑥𝐻𝑈) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈)
32 ovres 6842 . . . . . . . . . . . 12 ((𝑥𝑌𝑈𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈) = (𝑥𝐺𝑈))
3331, 32syl5eq 2697 . . . . . . . . . . 11 ((𝑥𝑌𝑈𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3433ancoms 468 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3534eqeq1d 2653 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑥𝐻𝑈) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥))
3630, 35anbi12d 747 . . . . . . . 8 ((𝑈𝑌𝑥𝑌) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3736adantl 481 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3826, 37mpbird 247 . . . . . 6 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
3938anassrs 681 . . . . 5 ((((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) ∧ 𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4039ralrimiva 2995 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
41403impa 1278 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
42123adant3 1101 . . . . . . . 8 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑌 × 𝑌) ⊆ dom 𝐺)
4342, 13sylib 208 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
442, 43syl5eq 2697 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom 𝐻 = (𝑌 × 𝑌))
4544dmeqd 5358 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = dom (𝑌 × 𝑌))
4645, 17syl6eq 2701 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = 𝑌)
4746raleqdv 3174 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
4841, 47mpbird 247 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4920, 48jca 553 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  cin 3606  wss 3607   × cxp 5141  dom cdm 5143  ran crn 5144  cres 5145  wf 5922  ontowfo 5924  cfv 5926  (class class class)co 6690  GIdcgi 27472   ExId cexid 33773  Magmacmagm 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fo 5932  df-fv 5934  df-riota 6651  df-ov 6693  df-gid 27476  df-exid 33774  df-mgmOLD 33778
This theorem is referenced by:  exidres  33807  exidresid  33808
  Copyright terms: Public domain W3C validator