Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exellim Structured version   Visualization version   GIF version

Theorem exellim 33529
Description: Closed form of exellimddv 33530. See also exlimim 33526 for a more general theorem. (Contributed by ML, 17-Jul-2020.)
Assertion
Ref Expression
exellim ((∃𝑥 𝑥𝐴 ∧ ∀𝑥(𝑥𝐴𝜑)) → 𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem exellim
StepHypRef Expression
1 nfa1 2184 . . 3 𝑥𝑥(𝑥𝐴𝜑)
2 nfv 1995 . . 3 𝑥𝜑
3 sp 2207 . . 3 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴𝜑))
41, 2, 3exlimd 2243 . 2 (∀𝑥(𝑥𝐴𝜑) → (∃𝑥 𝑥𝐴𝜑))
54impcom 394 1 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥(𝑥𝐴𝜑)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629  wex 1852  wcel 2145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ex 1853  df-nf 1858
This theorem is referenced by:  exellimddv  33530
  Copyright terms: Public domain W3C validator