![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exdistr | Structured version Visualization version GIF version |
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
exdistr | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 2028 | . 2 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓)) | |
2 | 1 | exbii 1921 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1852 |
This theorem is referenced by: 19.42vv 2030 3exdistr 2033 sbccomlem 3647 coass 5813 uniuni 7134 eulerpartlemgvv 30745 bnj986 31329 dfiota3 32334 ac6s6f 34292 |
Copyright terms: Public domain | W3C validator |