![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exbid | Structured version Visualization version GIF version |
Description: Formula-building rule for existential quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
exbid | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2103 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | exbidh 1834 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∃wex 1744 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-ex 1745 df-nf 1750 |
This theorem is referenced by: nfbidf 2130 mobid 2517 rexbida 3076 rexeqf 3165 opabbid 4748 zfrepclf 4810 dfid3 5054 oprabbid 6750 axrepndlem1 9452 axrepndlem2 9453 axrepnd 9454 axpowndlem2 9458 axpowndlem3 9459 axpowndlem4 9460 axregnd 9464 axinfndlem1 9465 axinfnd 9466 axacndlem4 9470 axacndlem5 9471 axacnd 9472 opabdm 29549 opabrn 29550 pm14.122b 38941 pm14.123b 38944 |
Copyright terms: Public domain | W3C validator |